 VII. MAGYAR SZAMITOGEPES GRAFIKA !

- i A . o B |

ES GEOMETRIA KONFERENCIA |

Budapest.
2014. FEBRUAR 19-20.

Szerkesztette:
Szirmay-Kalos Ldszlo
Renner Gabor

r

:

1

{

:

Neumann Janos Szamitogép-tudomanyi Tarsasag N

e e e o RS L o SR

Eloszo

Koszontjik a Hetedik Magyar Szamitégépes Grafika és Geometria Konferencia
(GRAFGEO 2014) kiadvanyat kezében tarté kedves olvasot. Ez a konferencia a
szamitdégépes képfeldolgozassal, képekkel és geometriaval kapcsolatos tudomanyok
seregszemléje, amelyet a Szamitogép-tudomanyi Tarsasag Szamitogépes Grafika
és Geometria Szakosztaly (GRAFGEQO) szervez kétévente. A Kkonferenciara
beérkezd cikkek szama és minésége mutatia a témakérnek a hazai kutatas-

fejlesztésben és egyetemi oktatasban jatszott szerepét, hangsulyait és fejlédési
iranyait is.

A benyujtott cikkeket a szerkeszt6k ellenérizték. A kiadvanyt Umenhoffer
Tamas készitette el6 nyomtatasra. A cimlapon lathatdo képek Csébfalvi Balazs és
Toéth Balazs munkai. A Kkonferencia legfébb szponzora a Neumann Janos
Szamitdgép-tudomanyi Tarsasag volt. A Szamitastechnikai és Automatizalasi Kutato
Intézet (SZTAKI) a konferenciaterem és az infrastruktira ingyenes rendelkezésre
bocsatasaval, a BME Iranyitastechnika és Informatikai Tanszék a nyomdai
el6készités atvallalasaval jarult hozza a konferencia sikeres megrendezéséhez. A
szerkeszték halasan koszonik a tamogatast minden szervezetnek és az Onzetlen
segitséget a szervezésben kdzremikddoknek.

Budapest, 2014. februar 19.
Renner Gabor és Szirmay-Kalos Laszl6

szerkesztok

Tartalomjegyzék

Szamitogépes geometria I.

Béla Szilvia, Szilvasi-Nagy Marta:

General Matrix Representation of B-Splines and Approximation of B-Spline Curves
and Surfaces with Third Order Continuity...........ccooiiiiiiiii e 1

Valasek Gabor, Vida Janos:
C? Geometric Hermite Spline SUMACES...........eeieiiieeiiieee e 7

Salvi Péter, Varady Tamas:
Multi-sided Surfaces with Curvature Continuity.............cocoiiiiiiiiiiiiiiiiiiin 13

Szécsi Laszlo:
A Geometry Model for Logarithmic-time Rendering..............ccoviiiiiiiinn . 21
Szamitégépes geometrial ll.

Hoffmann Miklos, Monterde Juan:
Rotational-minimizing surfaces in sphere-based surface design......................... 29

Vaitkus Marton, Varady Tamas:
Mesh Parameterization with Geometric ConstraintS.........coovviiviiiiiiiiiiiiiieeeenns 37

Kruppa Kinga, Bana Kinga, Kunkli Roland, Hoffmann Miklos:
Creating connection between skinning surfaces...............c.oooooiiiiiii. 46

Juhasz Imre, Réth Agoston:

A generalization of the Overhauser SpliNe.........cccceiiiinriimiieiaineiss 52
Kiterjesztett valosag és interakcio

Benedek Csaba, Janké Zsolt, Bércs Attila, Eichhardt Ivan, Chetverikov Dmitry, és
Sziranyi Tamas:

Viewpoint-free Video Synthesis with an Integrated 4D System............................ 60

Szemenyei Marton, Vajda Ferenc:
Learning Shape Matching for Augmented Reality...............cooooiiii 67

Ruttkay Zséfia, Bényei Judit:
Interaktiv mesekonyv gyerekekneko 72

Opra Istvan Balazs, Vajda Ferenc:
Implementation of a GPU Accelerated Image Segmentation Algorithm on Android
Pl T Ym0 R G B B . #8313 s s i 79

Feliiletrekonstrukcio

Chetverikov Dmitry, Eichhard lvan:
Creating 3D Models of Buildings by Car-Mounted LIDAR...............cooiiiiiiin. 88

Pernek Akos, Hajder Levente:
Non-rigid Face Reconstruction and Head Pose Estimation................................. 95

Polcz Péter, Benedek Csaba:
3D mesh generation from aerial LIDAR pointcloud dataoooi, 103

Kovacs Istvan, Varady Tamas:
Perfecting 3D computer models reconstructed from measured data.................... 109
Képszintézis

Banyasz Daniel, Szécsi Laszlo:
Optimizing State Changes in Rendering Engines...............ccoooiiiiiiiiiiii, 116

Szécsi Laszlo, Tukor Ferenc:
Hatching Animated Implicit Surfaces.............c.coooiiiii, AT 5 5 124

Lengyel Zoltan, Umenhoffer Tamas, Szécsi Laszl6:
Realtime coherent screen space hatching..........cocceeiiiiiiiiiiiiii, 131

Szécsi Laszlo, Sziranyi Marcell, Umenhoffer Tamas:
Improving Texture-based NPR.........o e 138

Kép és videodfeldolgozas

Toéth Marton Jozsef, Csébfalvi Balazs:
Mass-Spring Models for Anisotropic Diffusion.............ccooiiiiiiiiiies 149

Szirmay-Kalos Laszl6, Parajdi Bence, Csenki Zsolt:
Analysis of Image Descriptors for Zebrafish Toxicity Testing..................ccooinnen. 154

Varga Domonkos:
American Hand Sign Recognition in Video Streams.............c.ccoovviiiiiiiiiinn... 162

Berke Jozsef:
Digitalis képérzékel6k egységes paraméterezése informaciotartalom és
fraklalsr SRzl BIRIATN. .o mmsssmnessmsmmnmammammsn e & . &b § §0EHw 0 €05 25§ 5 AFHE 555 EER TR S 167

Kovacs Roébert, Palotai Ambrus, Fazekas Attila:
Emberi jelenlét érzékelése képfeldolgozasi modszerekkel............covieiiiiiiiin, 172

Orvosi vizualizacié és tomografia

Csébfalvi Balazs, Toth Balazs:
Contrast Enhancement of Volume Rendered Images..............ccoiiiiiiiiiienn. 178

Szirmay-Kalos Laszl6, Téth Balazs, Jakab Gabor, Gudics Péter, Magdics Milan:
Efficient Monte Carlo Method for Emission Tomography...........ccoviiiiiiiiiinn, 185

Szirmay-Kalos Laszl6, Jakab Gabor:
Analysis of Bregman lIteration in PET reconstruction...............ccoooviiiiiiiiinnn.e. 193

Toth Marton Jézsef, Csébfalvi Balazs:
Recent Results on Shape-Based Interpolation...............cooooiii . 201

Seventh Hungarian Conference on Computer Graphics and Geometry, Budapest, 2014

General Matrix Representation of B-Splines and
Approximation of B-Spline Curves and Surfaces with Third
Order Continuity

Szilvia Béla' and Marta Szilvési-Nagy’

! Department of Geometry, Mathematical Institute, Budapest University of Technology and Economics, Budapest, Hungary

Abstract

In this paper first an algorithm is presented to compute the matrix representation of non-uniform B-Spline functions
defined on arbitrary knot sequence. The algorithm is based on the reformulation of the de Boor-Cox recursion.
With the help of this reformulation the transformation matrix is obtained between non-uniform B-Splines and
Bézier representations. Then a method is presented to approximate separately created B-Spline curves. The input
curves and the resulting curve are represented by fourth degree B-splines. The approximation technique minimizes
a target function expressed by squared differences in positions and first derivatives of the input and resulting curves
at their corresponding points. The solution is the set of control points of the required B-spline curve approximating
two input arcs or curves. This method can be applied to merge B-spline curves or B-spline surfaces filling possible

gaps between them.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computational Geometry and Object Mod-
eling]: Curve, surface, solid, and object representations 1.3.5 [Computational Geometry and Object Modeling]:

Splines

1. Introduction

The B-Splines — introduced by Schoenberg ' —are applied in
various fields of computer graphics and geometric modeling.
Several algorithms have been developed and implemented
in modeling systems to visualize and to manipulate B-spline
curves and surfaces. In these computations the form of the
spline representation has a special importance.

From the 1970s — when B-spline representation generally
spread in curve and surface design — several algorithms were
developed to derive the matrix representation of B-spline
functions. The matrix representation provides fast and ef-
ficient evaluation of points on spline curves and surfaces,
computation of derivatives, and speed up several further
spline algorithms. The first matrix representation form of
splines was derived for Bézier curves by Chang?. Then Co-
hen and Riesenfeld® published a formula to represent uni-
form B-splines in matrix form. In 1990 Choi et al.* presented
a recursive procedure to generate the matrix representation
of NURBS curves and surfaces of arbitrary degree. In his
procedure the matrix representation was obtained by using

Boehm’s knot insertion algorithm. Later Grabowski et al.
and Liu et al.% presented analogous approaches based on dif-
ferent concepts. The algorithm presented by Grabowski and
Li is a recursive algorithm derived from the de Boor-Cox
algorithm, while Wang et al. presented two different algo-
rithms, both calculating explicitly the matrix representation
of NURBS. One is derived from the computation of divided
differences and the other from the Marsden identity.

In the literature several further algorithms were presented,
which convert the non-uniform B-spline functions to Bézier
form and vice versa. Until 2004 these algorithms were calcu-
lating directly with the basis functions, none of them utilized
the advantages of matrix representation form. Romani and
Sabin’ proposed the first algorithm, which generates direct
matrix transformation between uniform B-Spline and Bézier
representation. Later Casciola and Romani® generalized the
computations also for non-uniform B-splines.

Stitching or merging separately created B-Spline curves
and surface patches is frequently used in geometric model-
ing, and it is an important procedure in CAD-systems. These

Sz. Béla and M. Szilvasi-Nagy / Matrix Representation of B-Splines and Approximation of B-Spline Curves and Surfaces

algorithms are basically numerical interpolations using the
least squares method. Well functioning numerical solutions
have been developed, therefore, relatively few papers have
been published about the symbolic solution of the merging
problem. Tai et al.!2 and Chen et al.? presented methods for
approximate merging of B-spline curves and surfaces. Hu et
al.!0 described an extension algorithm for B-spline curves
by adding more interpolation points one by one at the end of
the curve. In the paper of Pungotra et al.!! the construction
of a covering surface is shown for unifying more B-spline
surfaces.

In this paper first we present a recursive algorithm which
generates the matrix representation of non-uniform B-spline
functions. The algorithm based on the reformulation of the
B-spline recursion. From the new recursion formula we can
generate the representation matrix of B-splines in the not
normalized Bernstein basis. Then we derive the transforma-
tion matrix from the not normalized Bernstein basis to the
polynomial space spanned by the power basis. Thus with the
algebraic reformulation of the B-spline recursion we gain a
transformation matrix to the Bernstein basis and also to the
power basis.

Then we approach the problem of merging two separate
B-spline curves. In the examples the input curves and the re-
sulting curve are represented by fourth degree B-splines. The
input curves may join at their end points precisely or with
gaps. The applied approximation technique is minimization
of a target function expressed by squared differences in po-
sitions and first derivatives of the input and the resulting
curves at their corresponding points. The variables in this
function are the unknown control points of the approximat-
ing curve. In the case of uniform B-splines the coefficients of
the basis functions are constant, therefore the minimization
problem can be solved symbolically. In the non-uniform case
the basis functions are depending on the parameter (knot)
values, and they have to be determined for each curve seg-
ment separately. The matrix representation provides an ef-
ficient method for the solution of the approximation prob-
lem avoiding non-linear optimizations. The required con-
trol points of the new approximating B-spline curve are the
solutions of a system of linear equations, and they are ex-
pressed as linear combinations of the input control points.
This method is basically different from the stitching method
shown in Szilvasi et al.!” using interpolation and fairing. Ma-
trix representation and fairing conditions for cubic B-spline
functions have been applied in papers by Szilvasi'? 1415, Fi-
nally, merging of B-spline surface patches are shown apply-
ing the developed curve approximation method for their pa-
rameter curves.

2. Preliminaries: B-splines, de Boor-Cox algorithm and
reformulation

B-spline functions of order k over the knot vector {7,,...tn}
are defined by the de Boor-Cox formula as:

{ 1, € [titit1)

1
Ni () 0, Otherwiss,

k k— =
NEW) = ot tisn—1s) NE () + ot tiers) NET (0),
where the o function is defined as

t—A
o4,B;t) = —— 1
(4B = 17— M

for arbitrary 4, B parameters, where A # B, and for all 7 € R.
This function has several properties, which are very advan-
tageous for B-spline computations. The main properties are

o(4,B;4) = 0,)

o(4,B;B) = 1, 3)

1 —o(4,B;t) = o(B,A4;t), 4)
1

aA.BD) = o(4,t;B), t#A4 (5)

o(4,B;t) = a(d4,C;t)-o(4,B;C). (6)

These properties can be easily derived from the definition of
the o function (1). Using the properties (4) and (6) a further
identity can be derived

o(A4,B;t)=0o(C,D;t)a(4,B; D) +o(D,C;t)o(A4, B;C) (7)

for any C # D real numbers. A special case of (7) when we
choose C = 0 and D = 1 then

o(0,1;¢) = ¢
o(1,0;4) = 1—1,
thus
o(Ad,B;t) =t-0(A4,B;1)+ (1 —t)-ou(4,B;0) (8)
is fulfilled.

As the consequence of the special identity (8) we can
rewrite the de Boor-Cox recursion in general:

1, 1€ [titiy1)
1 — ’ irbi+1
N = { 0, Otherwise,

Nfry = ’[a(liJH-k—I;I)N,-k-‘l(‘)+a(’i+kvtt’+l;|)N,'k:|l(’)]+

+ (1—1) [a(’i~’i+k—l;0)Nik_l(’)+a(’i+kv'i+l;0)N,k;1l(’)] =

1—4 = 1—¢ =
= ’[__'—Nf 1(1)+ —'HN:;II(I)]-Q—
tivk—1 — i tiv1 — litk
li k—1 livk k—1
+ (1—1)[—N. H+——N (],
b—tigk—i lik—tip) T)

where the piecewise polynomial B-spline N¥ (¢) has the sup-
portt € [ti, tivk)-

In order to generate the pieces of the B-spline functions

Sz. Béla and M. Szilvasi-Nagy / Matrix Representation of B-Splines and Approximation of B-Spline Curves and Surfaces

restricted to one knot interval [¢;,7;,1), we can also rewrite
the recursion as

1y _ [L t€titin)
Niw) = { 0, Otherwise,

Py
=
>

|

= ot} 1j4151) [a(’ia’i+k—1;’j+l)Nf_

-

(X(’i+k,fi+l;1j+l)Nﬁ;._1](’)] +
+ oftjp1,t5t) [a(ri,t,+k_|;tj)}\/,-"_‘(r)+
+ 0tk i) NG (0] ©

According to this form we transform all B-spline segments
from the knot span [¢;,7;,) and represent over the unit in-
terval as follows:

1 _ 1, i=j
Nyl = { 0, Otherwise,

k K
Ni(u) = "[a(’is’i+k—l;tj+l)Ni)+

-+

a(’i+ka’i+l;tj+l)Nik+_|](t)] +
+ (1= u) [t) N 00+
+ otins tinrs) N (0] (10)

where u € [0, 1).

Figure 1: Quadratic B-spline functions defined on the knot
vector {—2,—1,0,1,2,3,3.5,6,7,8,9} over the knot span
[0,6] (in the left) and transformed to the unit interval from
the knot span [3,3.5] using the rewritten recursion formula
(10) (in the right).

3. Transformation matrices

In this section we present how to generate the matrix
representation of the B-spline functions of order k de-
fined on an arbitrary knot vector {f,...t»}. The ba-
sis functions are piecewise polynomials on each knot
span [t;,1;41). Over the knot spans, where j = k,k +
1,...,n —k the B-splines have & different, non-zero poly-
nomial segments. These segments can be represented by
a matrix equation in the not normalized Bernstein basis
F dF 2 =), a1 —u)* T2 (1 —u)k Y over the

unit interval:

Ni(1) !
N5(1) - W21 =) 1E [tjytjs1),
. , uel0,1).
Ny_x(2) (1 —)k
(11)

Algorithm 1 BSCoeffMatrix (k,v={1],...,tn},/)

=1
2 o4, Byt) = =4 A;éB
1 1
% C[pl](—{ 0, thervwse
4: for i=2tok do -
(o 1<p<n—k1<g<i
5. C[pq] { (p.4ql, =P q

{initialization}

0, Otherwise

6 for g=1toi do

Vs for p=1ton—k do

8 C'[p,q] = agqati—l+q;’j+1)'c[pvq] +
a(!i+q-,fq+|;fj+|)A'C[P+ 1,q] =
(tg, lim14431j) - Clp,g —1] +
Qtiyg tgr13t)-Clp+1,g—1]

9: end for

10: end for

11: end for

12: return Cf

Algorithm 1 shows how to generate the coefficient ma-
trix C* of the equation system (11). The procedure is based
on the reformulated de Boor-Cox recursion (10). It col-
lects the coefficients of the functions 1 ~9(1 — u)? for all
q=1,...k—1 of the B-spline segment N;;(u) to the matrix
o

If we represent the B-spline segments from a
given knot span [f;,z;;1) in the matrix equation form
(11), then it is easy to transform the representa-
tion to a matrix representation into the power basis
{uk_',u"_z,...,u,l} and also into the Bernstein basis

{5 ()20 =), G2 (0 -

In order to find the transformation matrix of the B-spline
segments to the power basis, it is sufficient to find the trans-
formation matrix P¥ from the not normalized Bernstein ba-
sis to the power basis for polynomials of degree k — 1. Then
together with the transformation matrix ck computed by Al-
gorithm 1 the transformation matrix can be derived as the
multiplication of the two matrices:

HO) k!
Né'(l) o W2 te [lj.IjH),
=ct.ptl ~, |,
6 H uel0,1).
Ny A(’) 1

(12)

Sz. Béla and M. Szilvasi-Nagy / Matrix Representation of B-Splines and Approximation of B-Spline Curves and Surfaces

The P* matrix is a lower triangular matrix:

(—1)pmatt. <p_ 1), a<p,
PHp,q] = g-1

0, Otherwise.

This matrix can be easily derived from the following equa-
tion according to the Binomial-theorem:

k=prq1 _\p—1 _ k~p_p_l p—1 Pl
u P (1 —u) u I;) ! (—u) .

The B-spline segments can be transformed to the Bern-
stein basis with the help of a diagonal matrix B¥, which
contains the normalization constants of the basis functions
uFP (1 —u)P

71 pP=9q
k—1) '
B p.gl=¢ (p-1

0, Otherwise.

Thus the B-spline segments from a given knot span [¢;,;,1)
can be represented in the matrix equation form:

N{\([) (kgl)uk—l
N2 (o) _ck.pt. G Ca(S
NEL () (=) (1 — !

(13)
wheret € [t;,¢j1) andu € [0,1).

4. Approximation of B-spline curves using matrix
representation

In our solution for approximating two given curves we as-
sume that they are represented by B-spline segments of de-
gree 4. The vector function of the ith segment of such a curve
is

~

_—
w

[N}

ri(t) = (Pi—1 PiPiv1 Pit2 Piy3) M- | (2| ,0<¢ <0,
t

where M is the coefficient matrix of the power basis func-
tions and p;4x, kK = —1,...3 are the position vectors of the
S control points determining the curve segment. If the knot
vector is uniform periodic, then

1 -4 6 -4 1
|42 124 o
M=z16 6 6 6 0
4 =12 12 4 O
11110

is constant for each curve segment.

Fourth degree B-splines without multiple knot values and
control points are of third degree continuous.

In the first example we assume that two input segments
are given by B-spline functions with uniform periodic knot
vectors, one by ry(#) with control points p;; and the other
by rz(¢) with control points py;, (j =0,...,4).

The given curve segments can be join continuously or

with a possible gap between them.

We generate the resulting B-spline curve with 6 segments
qi(t), 0 <t <1, (i=1,...,6) determined by 10 control
points b, (j=0,...,9).

Py Pz Py Paz
P
v il P20 Pry P

7

Figure 2: Control points of two input curves and of the re-
quired approximating curve

In Figure 2 two input curves with a gap and the required
approximating curve with their control points are shown.
The segmentation of the curves are shown by circles. In the
computation of the approximating curve q(¢) the input data
are the control points of the given curves r;(z) and ry (),
and the output data are the 10 control points of the required
curve q(7). We are going to minimize the distances between
the corresponding points of the given and the approximating
curves. For this purpose each input curve will be decom-
posed in 3 segments, and all segments will be represented
on the parameter interval 7 € [0, 1]. The target function to be
minimized is the following

TFunc(b;) = ([mi—a)+
allsegments
T o)
103 ¥ ([w-ah+or ¥ (@),
segments1,2,5,6 segments3 .4
j=0...9,i=1,2. We have included into the target func-
tion also the difference between the first derivatives with the
weight factor 0.3 and a smoothing term expressed by the sec-
ond derivative of the approximating curve with the weight
factor 0.1. This third term smoothes the filling part between

Sz. Béla and M. Szilvasi-Nagy / Matrix Representation of B-Splines and Approximation of B-Spline Curves and Surfaces

the input curves. It can be omitted, if there is no gap. We
have computed the integrals numerically, choosing 3 inner
points and the end points of each curve segment omitting the
end points at the gap. The variables are the unknown control
points. The target function is quadratic in the 10 variables,
therefore, the minimization leads to a system of linear equa-
tions. With the resulting control points the equation of the
approximating B-spline curve is determined.

In Figure 3 the control polygons of the two input curves
(blue) and the control polygon of the new curve (red) are
shown. Figure 4 presents the two input curves (blue) and the
resulting curve (red). The approximation error is computed
by the integral

([-0,
allsegments
Its value is 0.0019 in this example computed with uniform
knot vectors. As the arc lengths of the two input curves
are very different (the first three and the second three arcs,
respectively, in Figure 4), we have repeated the approxi-
mation with a non-uniform knot vector of "chord length"
parametrization. This computation resulted in an error of
6.107%, whichisa significant improvement compared to the
first approximation using uniform B-splines. Thus the differ-
ence between the input and output curves is not even visible
in this case.

This approximating algorithm can be used for merging B-
spline surfaces by applying the presented algorithm to the
control nets row by row. Figure 5 and 6 show an example,
where the given surface patches on a cone surface have been
generated by the algorithm presented by Szilvasi et al.!®.

5. Conclusions

We presented a new technique to compute the matrix rep-
resentation of non-uniform B-splines. Although the recur-
sive generation of the representation matrix was already pub-
lished, our algorithm is based on a different concept, a re-
formulation of the de Boor-Cox formula. The structure of
this computation method shows the connection between the
well-known polynomial basis functions clearly. In the appli-
cations the matrix representation of B-spline functions pro-
vides effective solutions to interpolation and approximation
problems also symbolically, i.e. independently on the numer-
ical values of the input data.

The computations and figures have been made by the sym-
bolic algebraic program package Wolfram Mathematica.

Acknowledgements

The research of the second author was supported in a coop-
eration with the Technical University Berlin.

Figure 3: The control polygons of two input curves (blue)
and the control polygon of the new approximating curve
(red).

LS

™,

-3.0 =2.5 -2.0 =15 -1.0 =05 0.5

Figure 4: The two input curves are shown in blue.The re-
sulting curve (red) is presented with the connection points of
its B-spline segments.

References

1. 1.J. Schoenberg, Contribution to the Problem of Ap-
proximation of Equidistant Data by Analytic Functions
Quart. Appl. Math. 4, pp. 45-99, 112-141 (1946).

2. G. Chang, Matrix foundations of Bézier technique
Computer Aided Design 14, pp. 345-350 (1982).

3. E. Cohen, R. F. Riesenfeld, General matrix represen-
tations for Bezier and B-spline curves Computers in
Industry 3, pp. 9-15 (1982).

4. B. K..Choi, W. S. Yoo, C. S. Lee Matrix representa-
tion for NURBS curves and surfaces Computer Aided
Design 22, pp. 235-240 (1990).

5. H. Grabowski, X. Li, Coefficient Formula and Matrix
Representation of nonuniform B-spline functions Com-
puters in Industry 3, pp. 9-15 (1982).

6. L. Liu, G. Wang, Explicit Matrix Representation for
NURBS curves and surfaces Computer Aided Geomet-
ric Design 19, pp. 409-419 (2002).

7. L. Romani, M. A. Sabin, The Conversion Marix
between Uniform B-Spline and Bézier representation
Computer Aided Geometric Design 21, pp. 549-560
(2004).

Sz. Béla and M. Szilvasi-Nagy / Matrix Representation of B-Splines and Approximation of B-Spline Curves and Surfaces
e e L O and constrained optimization. Computer-Aided Design
00 35 893-899 (2003).

13. M. Szilvéasi-Nagy, Shaping and fairing of tubular B-
spline surfaces Computer Aided Geometric Design 14
699-706 (1997).

14. M. Szilvési-Nagy, Almost curvature continuous fitting
of B-spline surfaces Journal for Geometry and Graph-
ics 2 33-43 (1998).

15. M. Szilvasi-Nagy, Closing pipes by extension of B-
spline surfaces KoG 2 13-19 (1998).

16. M. Szilvasi-Nagy, Sz. Béla, B-spline patches con-
structed from inner data In Sixth Hungarian Confer-
ence on Computer Graphics and Geometry, Budapest 2
30-33 (2012)

Figure 5: Four surface patches on the cone with gaps in —rr ’ o .
betiveen, 17. M. Szilvasi-Nagy, Sz. Béla, Stitching B-spline curves
symbolically KoG, 17 3-8 (2013).

Figure 6: A surface band computed with merging four sep-
arate surface patches (see Fig. 5).

8. G. Casciola, L. Romani, A Generalized Conversion
Matrix between Non-uniform B-Spline and Bézier rep-
resentations with Applications in CAGD Multivariate
Approximation: Theory and Applications, 24-29 aprile
2003, Cancun, Mexico. pp. (2004).

9. J. Chen, G.-J. Wang, Approximate merging of B-spline
curves and surfaces Appl. Math. J. Chinese Univ. 25/4
429-436 (2010).

10. S.-M. Hu, C.-L. Tai, S.-H. Zhang, An extension algo-
rithm for B-splines by curve unclamping. Computer-
Aided Design 34 415-419 2002.

11. H. Pungotra, G. K. Knopf, R. Canas, Merging multiple
| B-Spline surface patches in a virtual reality Environ-
ment. Computer-Aided Design 42 847-859 (2010).

12. C.-L. Tai, S.-M. Hu, Q.-X. Huang, Qi-Xing, Approx-
imate merging of B-Spline curves via knot adjustment

Seventh Hungarian Conference on Computer Graphics and Geometry, Budapest, 2014

C? Geometric Hermite Spline Surfaces

Gibor Valasek! and Janos Vida!

! Faculty of Informatics, Eotvos Lordnd University, Budapest, Hungary

Abstract

Geometric Hermite interpolation of curves is a generalization of Hermite interpolation, which reconstructs
parametrization independent quantities, such as position, tangent directions, curvatures. This paper discusses
an extension of geometric Hermite interpolation to surfaces, where quadrilateral surface patches are created such
that the parametric corners reconstruct prescribed position, surface normal, principal curvature and principal di-
rection data. An algorithm for creating bi-quintic integral Bézier solutions is presented, the continuous connection
of these bi-quintic patches is investigated, and implementation details are presented.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Curve, surface, solid, and

object representations

1. Introduction

Geometric Hermite (GH) interpolation is a generalization
of Hermite interpolation. Its first application in context of
curve construction is due to de Boor et. al. !, who proposed
the construction of planar G? spline curves by interpolating
prescribed position, tangent direction, and curvature values
at each knot. Each segment of the spline is a cubic Bézier
curve, which reconstructs the above parametrization inde-
pendent quantities at its endpoints. This piecewise cubic in-
terpolant has an approximation order of six, however, its ex-
istence is not always guaranteed. A throughout geometric
characterization of the existence of planar and spatial geo-
metric Hermite curves was published by Schaback in ©.

Geometric Hermite interpolation for second order data,
i.e. position, tangent direction, and curvature values, has
been extensively studied for a wide range of curves, includ-
ing integral and rational Bézier curves 6, Pythagorean Hodo-
graph curves ® and spirals 9.

Interpolating position and normal (PN) data with surfaces
can be considered as a first order geometric Hermite inter-
polation problem. PN interpolation has been studied exten-
sively 8, 2.

This paper summarizes a second order generalization of
geometric Hermite interpolation to quadrilateral surfaces in
section 2, where prescribed position, surface normal, prin-
cipal curvature values, and principal directions are to be re-
constructed at each-parametric corner.

The main contribution of this paper is Section 3, where
bi-quintic integral Bézier patches are used to solve the four-
corner GH interpolation problem, the degrees of freedom di-
rectly not constrained by data are set, and a C? spline surface
is constructed that consists of four-corner GH interpolant
patches.

In section 4, a GPU implementation of these surfaces is
discussed. Section 5 summarizes our results.

2. Geometric Hermite surface interpolation

Let us briefly review the conditions of second order geo-
metric Hermite surface interpolation. Proof of theorems and
characterization of the existence of interpolants both in the
quadrilateral and triangular cases is found in our paper 7.

2.1. One-point reconstruction problem

Let there be given a G? base point data tuple

D = (p,n,ty,t5,%1,%2),

where p € E? denotes a point in the Euclidean space, n €
R3 is a surface normal, K1,%2 € R are principal curvature
values and t;,t; € R? are corresponding principal directions,
[n| = |t;| = |t| = 1, and K is the minimum and K; is the
maximum normal curvature. Without loss of generality, the

Valasek, Vida / C* Geometric Hermite Spline Surfaces

orthonormal basis (tj,ty,n) is assumed to be right-handed.
We also assume that the normals are oriented consistently.

Lets: R? > E*bea regular parametric surface, and con-
sider a point in its domain, where D is to be reconstructed.
At this point, let the coordinates of the s, sy partial deriva-
tives, with respect to the (tj,t,n) orthonormal basis, be
(Xuy)’uylu) (S R3, (/W,)’v,Zv) € RB, and let (xuu’)’uu,Zuu) e
R?, (Xuvy, Yuv, zZuv) € R, (xww, yvv,2v) € R denote the coordi-
nates of the Sy, Suv,Sw partial derivatives in the same basis.
Using the above notation, the following can be stated:

Proposition 1 The regular parametric surface s(u,v) recon-
structs the prescribed G? base point data of D at a point
(ug,vo) € dom(s) iff the following all hold:

s(ug,vp) =p)]
w=0)
w=0 3)

0 < XuYv — XvYu ' 4)

Zun = K]J‘% + K2y12l ©)

Zuy = K1 XuXy + K2YuYv (6)

2w =K1 + Kyl 7

Please note that we can always find partial derivative vec-
tors which satisfy (2)-(7). The first partial derivatives should
lie in the tangent plane of D, and the angle between them
should be less than 180 degrees, while the second order par-
tial derivatives can be freely translated parallel to the tangent
plane (t;,t>), because curvature reconstruction only imposes
restrictions on their coordinates along the surface normal.

2.2. Four-corner reconstruction problem
Let there be given four
pl) — (p('j),n([j),t(lij),tgij) u) U), i,j=0,1

G? base-point data tuples and let us find a

B} (u)B} (v),

T M:

degree (n,m) quadrilateral Bézier surface, n,m > 2,
(u,v) € [O,I]Z,bij eEi=0,.n j=0,.,m, , that re-
constructs the D) base point data at its parametric corners
(u,v) = (i, j),i,j =0,1.

First, let us consider the (u,v) = (0,0) corner and examine
how control points are constrained by the reconstruction of
second order geometric base point quantities!

Interpolation of position requires

boo =p'™.

The normal at the corner of the Bézier patch is computed
as

A"bgg x A% bgg
ﬂ(0,0) == l—m—'
|A10bgg x AOTbgg|

The reconstruction of surface normal is the equation
n(0,0) = n, which imposes restrictions on bgg,b1o and by;.

Principal curvature value and direction reconstruction re-
quires the first and second fundamental forms, since for
the normal section curvature along the tangent plane vector
du-s, +dv-s, we have 3

I _ Ldu® +2Mdudv + Ndv*
I~ Edu?+2Fdudv+ Gdv?

K(du,dv) = 8

and at (u,v) = (0,0) we have

E(u,v) = (bu(0,0),b,(0,0)) = n*(A'"bgo, A" bgp)
F(,v) = (bu(0,0),by(0,0)) = nm(A'*bog, A” byy)
G(u,v) = (by(0,0),b,(0,0)) = m*(A° bgo, A bgo)
L(u,v) = (b1u(0,0),n(0,0)) = n(n — 1){A%bgo,n(0,0))
M(u,v) = (bu(0,0),n(0,0)) = nm(A''bgo,n(0,0))
N(u,v) = (b(0,0),1(0,0)) = m(m —1)(A"*bgo,n(0,0))

Thus, the control points, required for a second order
geometric Hermite reconstruction at (u,v) = (0,0), are
boo,b10,bo1,b29,b11,bp2, shown in figure 1. The recon-
struction poses 8 scalar constraints on these six control
points.

To make these constraints more explicit, let (x;j,yij,zij)
denote the coordinates of b;; in the (p;t;,t,n) basis, i.e. in
the right-handed orthonormal basis with origin p and axes
coinciding with the principal directions and surface normal.

If by and by are chosen such that
z10=201 =0
X10¥01 —Xo1Y¥10 >0

then the only restrictions on the byy,byg,bga control
points are

Valasek, Vida / C* Geometric Hermite Spline Surfaces

Figure 1: The control points of a Bézier surface that de-
termine the position, tangent plane, and principal curvature
relations at (u,v) = (0,0)

I (00) .2 (00) 2
20 =~ (Kl Xio + K)'10) ©
00 00
211 =K(1)Xlo-X01+K(1))'10~)’01 (10)
_om (00) 2 (00) 2
02 = (K| X1 + K5)’01) (11)

that is, they should lie on certain planes. Let

M (m) = {a € E’|(a —p™ 0P = m}

denote the lifted tangent planes at p(ih) along the sur-
face normal. Using (9)-(11), the constraints on these control
points are written as

b2 € M(z29) 12)
by € M(z11) (13)
bo2 € M(z02) (14)

Now, let us consider all four parametric corners. The con-
trol points required for the reconstruction of G2 base point
data are

bi~n+(—l)’k,j'm+(—|)jl €]E3 (15)

i,j=0,l,and k+1<2.

Their coordinates are formulated similarly as in the case
of the (u,v) = (0,0) corner, but care must be taken, since the
computation of the mixed partial derivatives’ zsilj) coordinate
differs in the corners: in the case of D{!?) and (") equation

(10) must be multiplied by —1.

Considering the control net of a bi-quintic Bézier patch, it
can be easily seen that the following holds:

Figure 2: Control net of the bi-quintic Bézier patch. The
red, blue, green, and azure regions correspond to the con-
trol points that are necessary for the reconstruction of G?
base point data D(OO), D“O), pU '), and p©D,

Proposition 2 There is always a quadrilateral bi-quintic in-
tegral Bézier surface solution to the four corner second order
geometric Hermite interpolation problem.

3. C? Geometric Hermite spline surfaces

Now, let us consider the problem of constructing o spline
surfaces using bi-quintic four-corner second order GH in-
terpolants, provided the base points constitute of a regular
rectangular grid.

3.1. Control net based on paraboloids

First, the remaining degrees of freedom of the control net
need to be set. In order to do that, let us assign the base
paraboloids

u
P (u,v) = p) 4 [tg'])’tgj)’“(ij)] (i) ' (i)
%—uz =+ 532—"2

toeach D7) i j=0,1.

It is easily seen that the unit surface normal of a
paraboloid in (16) at (u,v) = (0,0) is n/) and its principal
curvatures and principal directions are KEU),Kgij), t(]ij),tgj),

Let us consider the corner (i, j) = (0,0) and let us drop
the upper indices, i.e. let D = D) n(©0) n,p(u,v) =
p(oo)(u,v) and so on.

Let u = (ax,ay),b = (bx, by) be two points in the domain
of the paraboloid p(u,v), and let g;;,i,j = 0,1,2 denote the
control points of the bi-quadratic Bézier patch that covers
the part of the paraboloid that is above (0,0) — (a,b), i.e. let

Valasek, Vida / C* Geometric Hermite Spline Surfaces

g(u,v) =p(u-ax+v-by,u-ay+v-by),

where u,v € [0,1] and g(u,v) = 237:0):.2=o gijB,-z(u)Bﬁ(v).

To specify the position of the b;j,i,j = 0,1,2 control
points, let us elevate the degree of g(u,v) to five in both the u
and v directions and assign the 3 x 3 control points of the re-
sulting control net around (u,v) = (0,0) to b;j,i,j =0,1,2.

These 9 control points are expressed explicitly in terms of
the power basis coefficients of the given paraboloid portion
as follows: let the power basis coefficients be

ag) =ay; =ap=an=>0,

ax by
ajg = |ay|,ag = |by|,
0 0
0 0
ay) = 0 , a0 = 0 g
Sai+%a 567+ %55
0
ap = 0

K] axb,\' + Kzayby

Then the coordinates of the control points in the
(pst1,t2,n) basis are computed as

boy = ago 17)
a
b10=%0+300 (18)
- w 19)
ap] + 5a
bo; = % (20)
—_— ay) + 5ajg + Sag; + 25agg @l
25
Sap)+4a;; +20a;9+ 10ag; + 50a
by = 2220 11 51(;) 01 00 22)
apy +4ag; + 10a,
bgy = 202772801 T SUR00 (23)
10
4ay; + 10a)9 + Sapy + 20ag; + 50a
by, = 2211 10 5(:)2 01 00 ©4)
Mg = Sayo + 8ay +20a0 + 5ag2 + 20ag; + 50agy @5)

50

If the angle between ayt| +ayty and byt + byt; is smaller

10

Figure 3: The bi-quintic Bézier patch (opaque with green
isolines) interpolates the prescribed four-corner base point
data, illustrated by purple transparent paraboloids, the red
and green lines at the corners are principal directions, the
blue line segments represent surface normals.

than 180 degrees, direct evaluation of the differences prove
that the choice of control points satisfies the conditions of
proposition 1, i.e at (u,v) = (0,0) base point quantities of
D) are reconstructed.

After handling the remaining three corners as above, 4 x 9
control points are generated, which together form the con-
trol net of a bi-quintic Bézier patch that satisfies the condi-
tions of the four-corner geometric Hermite reconstruction of
D) ,i,J =0, 1. Figure 3 shows such a bi-quintic patch.

The vectors aj(rij)tsij) + as.ij)tgj) and bJ(rij)t(lij) + bﬁ"f) tgij)
will be the tangent vectors of the boundary curves in the u
and v parametric directions at (u,v) = (i,), i,j = 0,1. Let
us refer to these vectors as base tangents.

In order to handle all the four corners correctly, we use
the following power basis coefficients:

) el =l =l =0 0o
; (—1)':ax r (—U’:bx
aly) = |(-1)ay |, a8 = [(-1)iby|, @D
0 0
0 0
al) 0 ali) _ 0 28)
20 X 2 X 2 ¥euz X) 1.2 Ky 1.2 :
‘zlax + ‘Qla\ '2be -+ '2zbv
; 0
alf! = 0 29)

(= 1)t (s axby + 2ayby)

Valasek, Vida / C* Geometric Hermite Spline Surfaces

D" D(11) = E(01) E(11)
@ - ;
tZ‘
t
1,b !
t, la
l /
Laa/ = t E19
® D9 = g0 '

D%

Figure 4: Connecting second order GH interpolants

3.2. Continuous connection along boundaries

Let us suppose our data are given in a uniform rectangu-
lar grid. ¢ continuity at the corners of Bézier patches fol-
lows from the construction. Now, let us consider b(u,v)
and ¢(u,v), two bi-quadratic four-corner GH interpolants of
base-point data tuples D'/ and EW) ,i,j = 0,1, with control
points b;j,¢;;,i,j = 0,..,5 respectively. See figure 4.

Let DY) = E(Oj),j = 0,1 and let us examine how b(u,v)
and ¢(u,v) can be connected with second order parametric
continuity along the u parametric direction.

C? connection along the b(1,v) = ¢(0, v),v € [0,1] bound-
ary requires that 4

A|0b4j = AmC()j 30)
A20b3j = AZOC()j (31)

hold for j = 0,..,5. This allows us to investigate the con-
tinuity condition independently on the two control net por-
tions around the two base point data tuples.

Let us consider the case of D('?) = E(%)_From (17)-(25)
it follows that ¢; j,i, j = 0,1,2 depend on the selection of the

base tangent vectors a(?) h(00),

Similarly, b3 j,i,j = 0,1,2 depend on the base tangent

vectors c('o),d(m), that is, the tangents vectors used for the
construction of the b;; control net.

Since both control net portions share the same base
paraboloid, assigned to D0 = E(0) anq taking into ac-
count the appropriate handling of base tangent directions
around this corner, conditions (30)-(31) can be satisfied by
using the same base tangent vectors for the u and v paramet-
ric directions, i.e. if a(%0) = ¢(10) — a,b(oo) =d) = p. See
figure 4.

The control points around the corner D) = EOV are
handled analogously. Continuity along the v parametric di-
rections is derived similarly.

4. Implementation

We used GLSL in the GPU implementation of the C 2 four-
corner GH splines, utilizing the programmable tessellation
stages introduced in OpenGL 4.

The GH surfaces are drawn as indexed patch primitives,
the vertices of the patches correspond to D base point data
tuples. Each vertex stores 3 vertex attributes:

Attribute index Type Semantics
0 vec3 peb
1 vecd [tl]
K1
2 vecd [tz]
K2

The 4 dimensional vectors of attribute indices 1 and 2
are composit values, the first three coordinates correspond
to one of the principal directions, the fourth to the principal
curvature value in that direction.

Because continuity between the GH patches depend on
the base tangent vectors, they have to be available for the
bi-quintic patch construction algorithm.

One way to do that, is to let the user set these vectors for
each vertex of the GH patch. This means that an additional
vertex attribute location needs to be attached to the vertices:

Semantics

3 vecd [z}

The base tangent vectors have an intuitive geometric in-
terpretation: while the direction of a determines the tangent
direction of the boundary curve along v = 0, the length of a
can be considered as the weight of the given control point,
i.e. how much the base paraboloid of the base point affects
the interpolant GH patch. Figure 5 illustrates the effect of the
base vector lengths.

Attribute index Type

Another way to compute proper base tangents vectors is
to provide the neighborhood of each GH patch. If we impose
a regularity restriction on the base-point control net, this can
be done the way geometry shaders store adjacency informa-
tion for primitives, i.e. by attaching the indices of the 1-edge
neighborhood of the patch to the primitive, increasing the
number of indices to 12 per GH patch. See figure 6 on the
layout of indices.

If the neighborhood is known, we need to compute base
tangent vectors a®) b(), i = 0,..,3. The following simple
Catmull-Rom-like formula is used:

11

Valasek, Vida / C? Geometric Hermite Spline Surfaces

Figure 5: Connection of two GH bi-quintic interpolants
along their common boundary. The length of base tangent
vectors are twice as long on the image on the right compared
to the ones on the left.

°
£ 8
|
S ' S—
10 3 2
1 6
o e
" 0 1
|
4 5
) ®

Figure 6: The patch vertex index layout. The bi-quintic
Bézier surface will be constructed from base point data
stored in vertices 0,1,2,3. Base tangent vectors are computed
utilizing the neighboring vertices, indices 4-11.

© _ ¢ <p(1)_p(n)’t(0)>

T2 {(p") p(“),té"))}
p® _ € {(PG) —P(“),tEO))}
2| (p® —p®, 0y

where ¢ € R is a global constant. The case of base tangent
angles greater than 180 degrees has to be handled too, for
example by a fallback to principal directions.

Based on these data, the Tessellation Control Shader
(TCS) computes the control points of the bi-quintic inter-
polant. The four base points at the corners of the patch are
transformed to world space and passed through to the Tessel-
lation Evaluation Shader (TES). Each invocation of the TCS
computes the 3 x 3 control points associated with the output
base point.

The TES evaluates the bi-quintic Bézier patch at the pa-
rameter values created by the Tesselator Unit. The outer and
inner tessellation levels are set in the TCS.

12

5. Conclusions

This paper presented a second order geometric Hermite
patch construction algorithm, and its application in the cre-
ation of C? spline surfaces. The conditions of parametrically
continuous connections were derived.

A GPU implementation of the algorithm was also pre-
sented, with user-defined, and automatically computed base
tangent vectors.

Future work includes the connection of non-regular base
point control net patches with parametric continuity, as well
as the construction of continuous quintic triangular spline
surfaces.

Acknowledgements

Our reserch was partially supported by grant number
EITKIC_12-1-2012-0001.

References

1. C. de Boor, K. Hollig, M. Sabin: High accuracy ge-
ometric Hermite interpolation, Computer Aided Geo-
metric Design 1987;4(4):269-78.

2. M. Boschiroli, C. Fiinfzig, L. Romani, G. Albrecht, G
rational blend interpolatory schemes: A comparative
study, Graphical Models, Volume 74 Issue 1, January,
2012, Pages 29-49

3. do Carmo: Differential Geometry of Curves and Sur-
faces, Pearson, st edition, 1976

4. G. Farin: Curves and surfaces for CAGD: a practical
guide, 5th edition, ISBN 1-55860-737-4, Morgan Kauf-
mann Publishers Inc. 2002

5. G. Albrecht, R. T. Farouki, Construction of c?
Pythagorean-hodograph interpolating splines by the
homotopy method, Adv. Comput. Math. 5 (1996), no.
4,417-442. MR MR 1414289 (97k:65033)

6. R. Schaback: Optimal Geometric Hermite Interpola-
tion of Curves, Mathematical Methods for Curves and
Surfaces II, 1998;1-12

7. G. Valasek, J. Vida Second Order Geometric Her-
mite Surface Interpolation, The Mathematics of Sur-
face XIV, ISBN 978-0-905-091-30-3, Pages 277-308,
IMA, Edited by Robert J. Cripps, G. Mullineux and M.
A. Sabin

8. A. Vlachos, J. Peters, C. Boyd, J. L. Mitchell, Curved
PN Triangles, 13D 01 Proceedings of the 2001 sym-
posium on Interactive 3D graphics Pages 159-166,
ISBN:1-58113-292-1

9. D.J. Walton, D.S. Meek: A generalisation of the
Pythagorean hodograph quintic ~ spiral, Jour-
nal of Computational and Applied Mathematics,
2004;172(2):271-287

Seventh Hungarian Conference on Computer Graphics and Geometry, Budapest, 2014

Multi-sided Surfaces with Curvature Continuity

Péter Salvi, Tamas Varady

Budapest University of Technology and Economics

Abstract

The basic idea of curve network-based design is to construct a collection of smoothly connected surface patches
that interpolate boundary constraints extracted solely from the curve network. While the majority of applications
demands only tangent plane (G') continuity between the adjacent patches, there are applications where curvature
continuous connections (62) are required. Examples include handling special curve network configurations with
supplemented internal edges, “master-slave” curvature constraints and general topology surface approximations
over meshes. The first step of the surface generation process is the construction of interpolant surfaces that enforce
suitable cross-derivatives for transfinite surface patches; these interpolants are often called ribbons. For G? inter-
polation we extend Gregory’s multi-sided surface scheme, and focus on creating and combining special parabolic
ribbons. We discuss the basic patch construction including the blending functions and a special sweepline param-)
eterization. A proof of G? continuity is given in the Appendix. The application of curvature continuous multi-sided
patches is demonstrated by a few simple examples.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling — curvenet-based design, transfinite surfaces, Gregory patches, G? continuity

1. Introduction

In curve network-based design, surface models are directly
defined by a collection of freeform curves, arranged into a
single 3D network with general topology. Curves may come
from (i) sketch input, (ii) feature curves extracted from or-
thogonal views, (iii) curves traced on triangular meshes or
(iv) direct 3D editing. Once the curves are defined, all the
surfaces are generated automatically. This calls for a repre-
sentation based on geometric information extracted solely
from the boundaries. Transfinite surface interpolation is a
natural choice, as it does not require a grid of control points
to define the interior shape, and all n boundaries are han-
dled uniformly, unlike in the case of trimmed quadrilateral
surfaces. The ability to interactively edit prescribed bound-
aries and cross-derivatives is also an advantage in contrast to
recursive subdivision schemes.

The first step of surface generation is to compute cross-
directional data, such as common tangent planes and, when
needed, curvatures that will be shared by the adjacent
patches. Then interpolant surfaces or ribbons are generated,
that carry first or second-degree cross-derivative constraints
to be eventually interpolated by the transfinite surfaces.

The majority of multi-sided transfinite surfaces are de-
fined over convex domains, combining only linear ribbon
surfaces and enabling G! continuity between the adjacent
patches. At the same time, there are several practical design
situations, where this approach is not sufficient, and higher
degree continuity is required.

(i) It often occurs that additional curves need to be in-
serted into-the curve network to make it suitable for applying
convex methods. The supplemented curves must be compati-
ble with the already defined ribbons, and it is particularly im-
portant to produce seamless transitions along these curves. A
typical example is when two curves span a concave angle at
a common vertex and then a composite patch — with con-
vex domains — is created. Another example is to generate
surfaces by interpolating two disjoint loops with prescribed
slopes (see Figure 7 later in Section 5).

(i1) Another interesting situation is when a designer wants
to retain one of the surfaces (the master), but also wants to
prescribe a curvature continuous connection for the adjacent
patch (the slave), see Figure 8.

(ii1) A third example is when we have a general topol-

13

!r-*

P. Salvi, T. Vdrady / Multi-sided Surfaces with Curvature Continuity

ogy curve network defined over a mesh and want to obtain
a good approximation of the interior data points (see Fig-
ure 9). Clearly, if we extract not only the normal vectors,
but also curvature information from the underlying mesh,
we can obtain a more accurate approximation.

In the above cases, it is possible to ensure G? continu-
ity by using parabolic ribbons. In Section 2 we give an
overview of related publications. In Section 3 various meth-
ods to compute linear and parabolic interpolants will be dis-
cussed, while in Section 4 we introduce an extended Gre-
gory patch formulation with a new sweepline parameteriza-
tion that makes it possible to combine parabolic ribbons and
yield curvature continuous surfaces. A few examples will il-
lustrate the surface scheme in Section 5.

2. Previous Work

Most papers concerning transfinite surface interpolation as-
sume that either the ribbons, or at least the cross-derivatives
are given, and very little is written about how this informa-
tion can be extracted from a curve network. The reason for
this apparent lack of interest may be that at the time when
transfinite surface interpolation appeared with the Coons?
and Gregory' patches, its main application was hole filling
and vertex blending, where additional cross-directional data
were readily available. This trend lived on, even after the
advent of curve network-based ideas, such as the Minimum
Variation Surfaces®.

There is a constant interest in multi-sided patches with G2
continuity, the first efforts dating back 25 years3. In partic-
ular, an extension of the Gregory patch similar to the one
described here was published by Hall and Mullineux®.

Special treatment of difficult configurations is also a re-
curring theme in the literature; most approaches use con-
cave domains’ % 9 to handle holes and extreme spatial struc-
tures, though we have very limited information concerning
the practical design potential and the quality of these shapes.

3. Computing Ribbons

In the course of curve network-based design, users cre-
ate and/or edit the boundary curves, while surfaces are
generated in an automatic manner. This means that cross-
derivatives and curvatures are also derived solely from the
curve network. Here we will deal only with generating
smooth connections, though in a real system the user may
want to create sharp edges, as well.

All continuity constraints are accomplished through defin-
ing “proger” ribbons, i.e., once we set the adjacent ribbons
G! or G? continuous, the respective transfinite surfaces will
inherit this property.

Two adjacent ribbons are G' continuous if they share the
same sweep of normal vectors (called the normal fence)

14

Figure 2: Normal curvature arcs and Gauss curvature map

along the common boundary. Figure 1 shows an example,
where the fence is rendered as a series of yellow lines. The
necessary condition for G' continuity is that the first cross-
derivatives on both sides are perpendicular to the fence.

When we require G> continuity between two surfaces, we
can make use of the Linkage Curve Theorem'?-5:

Two surfaces tangent along a C !_smooth linkage
curve are curvature continuous, if and only if at
every point of the linkage curve, their normal cur-
vature agrees for an arbitrary direction other than
the tangent of the linkage curve.

This practically means that if we have a particular directional
sweep along the common boundary, and the normal curva-
tures of the two ribbon surfaces in this direction are always
the same, then we have G2 continuity. Figure 2 shows an ex-
ample with the common normal curvatures shown as circular
arcs.

In the rest of this section, we will investigate how to de-
termine normals and curvatures from the curve network.

P. Salvi, T. Vdrady / Multi-sided Surfaces with Curvature Continuity

3.1. Preliminaries

A ribbon is a four-sided side interpolant surface R(s,d),
where s is the side parameter, and d is the distance parame-
ter. The side parameter is in the interval [0, 1] and runs along
the boundary curve. The distance parameter is defined in the
cross direction; it is zero on the boundary and increases as
we move away from it.

For a given n-sided patch, there is a loop of curves, P;(s;),
and we need to create the. corresponding ribbons R;(s;,d;),
i € [1...n]. The parameters (s;,d;) can also be regarded as
functions that map values from a common domain (see Sec-
tion 4.2). Note also that the indexing is circular, with 1 com-
ing after n and vice versa, and we have P, (1) = P;(0) for
all i.

3.2. Cross-derivatives

We assume that for each vertex of the network the crossing
curves define a local tangent plane. For each boundary P;(s;)
of a given patch, there exists a normal fence N;(s;) that in-
terpolates the normals at the related corners and minimizes
its rotation along the boundary. This is called a rotation-
minimizing frame or RMF. An exact (closed form) solution
of the underlying differential equation cannot be determined,
but approximations can be computed via a sequence of dis-
crete points'4.

The cross-derivatives of the ribbons are defined as

d
a_‘jiRi(-Yi,O)

= (X(Si)Di(Sf)+[3(Si)a%iRi(Si~0),

Ti(si) =

where o(s;) and B(s;) are scalar functions, and D;(s;) rep-
resents a direction vector function, that is perpendicular to
Ni(s;) everywhere. One trivial choice is the binormal

o)
a—s’_Ri(SiaOX

but other definitions are also possible.

Dij(s;i) = Ni(si) x

The scalar functions satisfy end conditions at the corner
points (s; = 0 and s; = 1), but there are further degrees of
freedom to define these in order to optimize the shape of the
patch. For example, cross-derivatives at the middle of the
boundary (s; = 0.5) can be prescribed by users for enhanced
control of the surface shape. Alternatively, these can be opti-
mized by fairing algorithms, which is the subject of ongoing
research.

3.3. Creating Ribbons

We will look at two types of side interpolants: linear ribbons,
that are ruled surfaces suitable for creating a G'-continuous
model, and parabolic ribbons, that are quadratic in the cross
direction, and rely on the computed common curvature val-
ues to ensure G2 continuity.

(Lh)

-
-

0,0) (al,0)

Figure 3: Setting the control points of a parabolic ribbon.

3.3.1. Linear Ribbons

Given a boundary curve P;(s;) and the corresponding cross-
derivative T;(s;), ribbon construction is straightforward:

Ri(si,di) = Pi(si) + diT;(si).

3.3.2. Parabolic Ribbons

Parabolic ribbons are also simple, having the form
1
Ri(si,di) = Pi(si) + diTi(si) + 5diCi(si),
where Cj(s;) is the second cross-derivative of the ribbon.

It is a natural choice to calculate the normal curvature in
the sweeping direction of the first cross-derivative, i.e., in
the plane spanned by 7;(s;) and N;(s;) . Let us transform, for
ease of computation, the parabolic arc of R; at a fixed §; into
a local coordinate system, where the first point is the origin,
and the tangent of the arc is the local x-axis. Then at a given
boundary point the equation of the parabola can be written
as a quadratic Bézier curve

Ri(§i,di) = BG(d;) - (0,0) + B (d;) - (0, 0) + B3 (dy) - (1,),

yielding x = 2—(:'_75 (see Figure 3). Assuming that the width of
the parabolic ribbon is the same as the corresponding linear
one, / is already defined. Then the prescribed curvature k¥
can be set by means of o and &, which define the second and
third control points of the parabolic arc.

The choice of o gives us a degree of freedom. It may be
chosen as a constant. A better choice is to optimize o so
that the parabolic ribbon should minimally deviate from the
corresponding linear one. This can be formalized as

! 2
(al— 5) +h? — min,

which leads to the depressed cubic equation

20+ 161> =1,

that can be solved by Cardano’s method.

4. Surface Creation

There are various transfinite surface schemes that can be ap-
plied to interpolate given ribbons. For a comparison, see a
review of the authors'3. Here we will use Gregory patches,
as it is one of the simplest and most well-known methods.

15

P. Salvi, T. Vdrady / Multi-sided Surfaces with Curvature Continuity

\ .
\
1
1
\
\
\
\
\
a "(u,v) b
\
\
\
\ =
| 0 (0'0) ‘-(S,O) (1'0) \‘\ \\\ \x ‘\ ‘I ’\ I[:/ !’ // I' F % 4
(a) Radial (b) Sweep construction (c) Constrained sweep
Figure 4: Parameterizations
4.1. Ribbons

Gregory patches combine corner interpolants, so our first
task is to convert our side-based (linear or parabolic) ribbons
to corner-based surfaces. It is well-known from the classi-
cal theory of Boolean-sum surfaces? that a correction patch
Qi.i—1 is needed to cancel out the unwanted terms coming
from the combination of the two side interpolants (see also
Section 4.3):

Rii—1(si,si—1) = Ri—1(si—1,8) +Ri(si, 1 —si_1)
= Qii—1(8i8i-1),

where s; = s;(u,v) (j € [1...n]) denote the side parameters
defined over the polygonal domain. This brings us to the next
topic: how to map the four-sided ribbon surfaces onto the n-
sided domain polygon, or inversely, how to determine the
local side parameters from a given (u,v) point.

4.2. Parameterization

The domain of a Gregory patch is an n-sided polygon in the
2D plane. Previous research!3 shows that the use of irregular
polygons reflecting the spatial distribution of the boundary
curves generally improves the quality of transfinite surfaces.
In this paper, however, we will use regular domains for sim-
plicity’s sake. Experience shows that these behave well un-
less we have extreme boundary configurations with very un-
even side lengths or sudden curvature changes.

Let us determine the parameter s; for the i-th side. Tradi-
tionally, Gregory patches are parameterized by radial sweep-
ing lines' (Figure 4a), connecting the domain point in ques-
tion to the intersection of the extended polygon sides i — 1
and i+ 1. This is suitable for G' continuous surfaces, but
further differential properties are required for G? continuity.
For each point on the i-th side, it is a necessary condition that
the parametric speed of the adjacent side parameters s;_jand
Si4+1 is identical, i.e.,

0si_1 _ 0Siy]

ow ow

16

where w is an arbitrary sweeping direction. (See also the
proof of continuity given in the Appendix.)

The above property can be satisfied, if we create the
sweeping lines using Hermite polynomials. Without loss of
generality, let the base edge be a segment from (0,0) to
(1,0), a and b edge vectors associated with sides i — 1 and
i+ 1, respectively, and (u,v) the point to be mapped, see Fig-
ure 4b. Then we can construct the equation

(u,v) = (5,0)+d[a-H(s)+b-H(1—5)],

where H(s) = 25* — 35> + 1, and s and d are unknown. This
leads to a fourth-degree equation in s:

4
48 +C3S3 +czs2 +c1s4+¢o=0,

where the coefficients are

e
04—v(a b"),

& = 2a"—b") 4 S (ut)b —a),
e = 3(b"—a")—%3(b"—a"),
¢ = —-a’
o = @ —Za',
1%
with a = (a“,a") and b = (b",b").

This does not pose any difficulty for real-time computa-
tion, as efficient algorithms exist for solving fourth-degree
polynomial equations'!, and the values for a given resolu-
tion can be cached. For the result, see Figure 4c. Note, that
now the blue sweeplines of side i — 1 and the red sweeplines
of side i+ 1 at the bottom are identical in a differential sense.

4.3. Correction Terms

Let us investigate the partial derivatives of two ribbons meet-
ing at a common corner point. We need a single corner inter-

P. Salvi, T. Vdrady / Multi-sided Surfaces with Curvature Continuity

Figure 5: Blend function with m = 2 (left) and m = 3 (right)

polant, but the partial derivatives are not necessarily identi-
cal, which may pose a problem called twist incompatibility.
Let us introduce the notation #; = 1 — s;_;. We would need

i Ri(0,0 o R 1,0
asTarl i(0,0) PYE i—1(1,0)
= Wpq p,q€{0,1,2}.

Every curve network satisfies this equation for p = ¢ =0,
as the boundaries meet at a fixed corner point. It is also nat-
ural to require that the equation holds for p =0, ¢ = 1 and
p =1, g =0, constraining the first cross-derivative at the
boundary to the tangent of the neighboring curve. Most net-
works do not go beyond this point — and even if the curves
match a common surface curvature’, it only handles the ad-
ditional cases p =2, g=0and p =0, g =2, as well as
p=g=1.

When some partial derivatives of the ribbons are not com-
patible, we need to apply Gregory’s rational twists. These
replace the constant vectors W), by rational expressions
combining the two parametric variables (see below). In our
current research, we assume that the boundary curves match
only in position, and for all other terms rational expressions
are used. This may create another layer of flexibility for
shape optimization.

The correction patch is defined as

Qii—1(si,ti) = Fi(0) +siWi0+1Wo,1 +5itiWh 1

13 1, 1
+ §S1W2.0+ Sl Wo,2+§

+ lSif,zWLz + ls.zi,'ZWz.z,
2)
where each W is a rational function of s; and #;. The com-
putation of these is a fairly straightforward generalization of
the classical Gregory twists'S. As an illustration, we show
two such terms, the remaining ones are similar:

2
sitiWa

STio1(1) +16 2 P(0)
s,~2+1,~3
ST Tio1 (1) +1i3-Ci(0)

X,-z +1;

Wi 0(si,1:)

Wia(siti) =

Substituting 0 for either s; or #; eliminates one of the con-
flicting partial derivatives.

4.4. Blending Functions

Every transfinite surface scheme combines individual inter-
polants by special blending functions that ensure the re-
quired interpolation properties and gradually vanish as we
move towards the center of the domain. Gregory patches
consist of corner interpolants, so we need corner blends that
interpolate the corner points, gradually fade on the adjacent
sides, and vanish on all other sides.

For each (u,v) point in the polygonal domain, we de-
termine an n-tuple of distance values A;, computed as the
perpendicular distances from the i-th side. Let D;, ; =
ITj¢{ir...;} A7 then the corner blend is defined as

D Tl
YiDjj-1 \ X;l/(aa-0)")"

Bii—1(u,v) =

This function satisfies all requirements — it yields 1 at the
(i—1,i) corner, ensures a “gradual” 1 — 0 transition on sides
i— 1 and i as we move away from the corner, and vanishes
on all the remaining sides. ’

The exponent m controls how rapidly the contribution of a
single ribbon changes, compare the two images in Figure 5.
It also ensures that the resulting surface retains the (m — 1)-th
derivatives of the ribbons, so we can use m = 2 for linear
ribbons, and m = 3 for parabolic ribbons to achieve G' and
G? continuity, respectively.

4.5. Surface Equation

Given a curve network with side interpolants, now we can
create all constituents — the corner interpolants, the domain

S

S

Figure 6: Connectivity between Gregory patches

(a) Linear ribbons (G')

(b) Parabolic ribbons (G?)

(A

17

P. Salvi, T. Vdrady / Multi-sided Surfaces with Curvature Continuity

(a) Concave angle

(b) Highly curved boundary

(c) Internal loop

Figure 7: Improved surfacing using connection curves.

polygon, the parameterization and the blending functions.
Putting these together, we arrive at

Suy) = 3 Rig (51t v)s 51t () Bis ().

5. Examples

Figure 6 shows two adjacent patches with linear vs.
parabolic ribbons. In this example, the target curvatures were
computed by averaging those on the left and right sides. It

Figure 8: Vertex blend with three master surfaces

18

can be seen, that with parabolic ribbons the curvatures nicely
match, and the isophote strigs smoothly change across the
shared boundary, showing G continuity.

In the rest of this section, we present some applications of
parabolic ribbons.

5.1. Difficult Curve Network Configurations

While most of the time G' transfinite surface interpola-
tion produces a collection of smoothly connected convex
patches, there are certain cases, where in order to handle
complex configurations or avoid shape artifacts, we need to
insert “artificial” connection curves into the network:

e curve loops with a concave angle,
e avoiding distortions due to highly curved boundaries,
e connect internal loops (holes).

Examples are shown in Figure 7. In these cases, first we in-
sert connection curves, then create G' patches. After taking
the average of the curvatures, we compute parabolic ribbons
and regenerate the patches now with curvature continuity.
These composite patches remain smooth internally and the
seamlines are invisible along the connection curves. (Note,
that generally connection curves are automatically gener-
ated, and remain hidden from the users.)

5.2. Master-Slave constructions

There are various methods to compute a target curvature
function along a given curve. The most straightforward solu-
tion is averaging the curvatures of two adjacent G' patches,

P. Salvi, T. Vdrady / Multi-sided Surfaces with Curvature Continuity

Figure 9: Deviation from the mesh using linear (left) and parabolic (right) ribbons

as before. Another typical situation is, when the curvature
of a master patch needs to be retained. Then these curva-
tures are propagated to the surrounding slave patches using
parabolic ribbons. Such an example is shown in Figure 8,
where a setback vertex blend was created, satisfying curva-
ture continuity joining three edge blends, i.e., we have three
master surfaces, and one slave in the middle.

5.3. Mesh Approximation

Creating a concise representation of a mesh is an impor-
tant task in general topology surface modeling. First, a net-
work of curves is drawn on the mesh, which also defines a
multi-sided patch structure. By deducing boundary curves
and cross-derivatives from the mesh, transfinite surfaces can
nicely approximate the data points in the interior. Using lo-
cally estimated normal vectors we can create normal fences
and linear ribbons for G' patches. If we estimate local curva-
tures along the boundaries, as well, this makes it possible to
create parabolic ribbons and G? patches, which will produce
smoother and more accurate surface models (see Figure 9).

Conclusion

We have discussed an approach for G? transfinite surface
interpolation combining parabolic ribbons. These ribbons
match curvatures that are associated with the edges of a
general topology curve network. The formulation is based
on corner interpolants and a special sweepline parameteri-
zation. Continuity issues and the computation of linear and
parabolic ribbons were explained in details. A few applica-
tions where G? ribbons are needed have also been presented.

There are several open issues in transfinite surface inter-
polation for future research. Ribbon creation is one of the
fundamental ones, as they are constrained, but not uniquely
defined. We are currently investigating ribbon optimization
approaches for surface fairing and obtaining the best possi-
ble transfinite approximations over triangular meshes.

Acknowledgements

This work was supported by the Hungarian Scientific Re-
search Fund (OTKA, No. 101845). The pictures in this pa-
per were generated by the Sketches system developed by
ShapEx Ltd., Budapest. The contribution of Gyorgy Kariké
to develop this prototype system is highly appreciated.

References

1. P Charrot, J. A. Gregory, A pentagonal surface patch
for computer aided geometric design, Computer Aided
Geometric Design 1 (1) (1984) 87-94.

2. S. A. Coons, Surfaces for computer-aided design
of space forms, Tech. Rep. MIT/LCS/TR-41, Mas-
sachusetts Institute of Technology (1967).

3. J. A. Gregory, J. M. Hahn, A c? polygonal surface
patch, Computer Aided Geometric Design 6 (1) (1989)
69-75.

4. R. Hall, G. Mullineux, Continuity between gregory-
like patches, Computer aided geometric design 16 (3)
(1999) 197-216.

5. T. Hermann, G. Lukdcs, F.-E. Wolter, Geometrical cri-
teria on the higher order smoothness of composite sur-
faces, Computer Aided Geometric Design 16 (9) (1999)
907-911.

6. K. Hormann, M. S. Floater, Mean value coordinates
for arbitrary planar polygons, Transactions on Graph-
ics 25 (4) (2006) 1424-1441.

7. K. Kato, Generation of n-sided surface patches with
holes, Computer-Aided Design 23 (10) (1991) 676—
683.

8. K. Kato, N-sided surface generation from arbitrary
boundary edges, in: Curve and Surface Design, Inno-
vations in Applied Mathematics, Vanderbilt University
Press, 2000, pp. 173-181.

19

P. Salvi, T. Vdrady / Multi-sided Surfaces with Curvature Continuity

9. H.P.Moreton, C. H. Sequin, Minimum variation curves
and surfaces for computer-aided geometric design, in:
N. S. Sapidis (ed.), Designing Fair Curves and Sur-
faces, SIAM, 1994, pp. 123-159.

10. J. Pegna, F.-E. Wolter, Geometrical criteria to guaran-
tee curvature continuity of blend surfaces, Journal of
Mechanical Design 114 (1) (1992) 201-210.

11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.
Flannery, Numerical recipes in C (2nd ed.): the art
of scientific computing, Cambridge University Press,
1992.

12. P. Salvi, T. Varady, A. Rockwood, Ribbon-based trans-
finite surfaces, Computer Aided Geometric Design
(submitted).

13. T. Vérady, A. Rockwood, P. Salvi, Transfinite surface
interpolation over irregular n-sided domains, Computer
Aided Design 43 (11) (2011) 1330-1340.

14. 'W. Wang, B. Jiittler, D. Zheng, Y. Liu, Computation of
rotation minimizing frames, Transactions on Graphics
27 (1) (2008) 2.

15. A. Worsey, A modified C2 Coons’ patch, Computer
Aided Geometric Design 1 (4) (1984) 357-360.

Appendix A: Proof of Continuity

We will provide here a short proof that Gregory patches with match-
ing parabolic ribbons are indeed G2 continuous. We will prove a
stronger statement: the modified Gregory patches described in the
paper interpolate their ribbons with C? continuity.

To save space, arguments of functions are omitted, when this can-
not cause any misunderstanding. From here onwards, we look at a
point on the ith side, i.e., s;—1 = 1 and s;4.; = 0. In this situation, the
blending function has several important properties'2, which we list
here without proof:

Bij—1+Bit1; = 1, (1
b}
3 Zii-1 = 0, j¢ {ii+1}, 2)
az
3281 =0, j¢ {i,i+1}, 3)

w being an arbitrary direction. From the above it also follows that

bl

E(Bj‘j—l"'BjH,j) =0, jé¢{i—-li+1}, 4
az

w2 Bii=1+Bjs1j)

Il

0, je{i—1,i+1}. (5

2 Continuity

This is very straightforward, using property (1) of the blend func-
tions:

S = Rii—1Bii—1+Rip1iBit1i
= Ri(5i,0)(Bii—1+Biy1.i) = Ri(si,0).

20

(6h Continuity

As before, most of the equation vanishes, leaving

9) dsiy1 0 Js;
aws [? :+117W—+as R:+l:aw] Bit1,i
) dsi_
[a ii— 1 a lRH—I%:IBH—I

] 9
+ [Ri+1,ia—wBi+|,i +Rii—1 EBi,i—l] .

Since Ri;+1,; = Rji—1, we can use property (4) to eliminate the last
term. After some calculation, we arrive at

d X 0s;—
ES = P(Sl) +T(Y,)[i+l ;’+] +Bii-1 ; I:|’

which is a combination of the ribbon’s side- and cross-derivatives,
proving G' continuity. Using the parameterization constraint

e D

—5.» We get back the ribbon’s first derivative, so we have
proved C' continuity.

c* Continuity

In a similar vein, we can eliminate a large part of the equation, after
which the following remains:

92 i) 0841 o) dsi] 9
—S = Ri + —Rig1,i—

ow [a 51 T 9w Oy '*"’aw]

) osi) dsi—1] 0
2 I:a_s'_Rl,l—l a-w + a.s‘,,l Riji—1 —aw :|
[22 E 22

R +2—R —
as'_+l i+ M2 a~“:+l-"i i+1.i

02 ds? 92 0s?
a’S%RHlJaTIZ] Biy1,i+ [ER:J—I 7’

82 aS,'_l a‘\‘,' 62 8.712_4 :| B,-,- ;

+

o

4

+

2= R o ey g
dsisi—y 1w ow Bs,z_l h=175,2

92 92
#* |:Ri+l.im8i+l,i +Rii— mBi.i—l} .

The last term vanishes once again, due to property (5). This leads to

82 _ a aS,'+| a aS,g|
ms = 2Ti(s) [a*wBiH 2w + a—wB:.:—l W]
0s? ds; 0541 051
+ Pl ()a +2T()aw {BH-IJ'W"‘BH*I W :|

+

0s?, | 952,
Ci(si) Bl+lra 5 +BH 1555 S |

Applying the parameterization constraint, we get

92 Js; dd; adZ
ms (3l)v+27 (Y')a_wﬁ +C(")aw2’

which is the second derivative of the ribbon, so we have proved C2
continuity.

Seventh Hungarian Conference on Computer Graphics and Geometry, Budapest, 2014

A Geometry Model for Logarithmic-time Rendering

Laszl6 Szécsi

Budapest University of Technology and Economics, Budapest, Hungary

Abstract

Complex geometries, like those of plants, rocks, terrain or even clouds are challenging to model in a way that
allows for real-time rendering but does not make concessions in terms of visible detail. In this paper we propose
a modeling approach called KRS, or kernel-reflection sequences, inspired by iterated function systems. KRS visu-
alization avoids expanding the procedural definition into polygons all along the rendering pipelines. The model is
composed of kernel geometries and reflection transformations that multiply them. We show that a distance function
can be evaluated over this structure extremely effectively, allowing for the implementation of real-time sphere trac-
ing in pixel shaders. We also show how the algorithm easily delivers continuous level-of-detail and minification
filtering. We discuss how exploiting screen-space coherence can enhance ray-casting performance. We propose
several techniques to hide symmetry that could be disturbingly obvious when viewing the models from certain
angles. In order to prove that the seemingly limited model can be used to realize various natural phenomena in
uncompromising detail without obvious clues of symmetry, we render trees, grass, terrain and rock in real-time.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.7]: Three-Dimensional

Graphics and Realism Fractals

1. Introduction

Geometries occurring in nature typically feature intricate de-
tail and great extents at the same time. They pose challenges
throughout both the modeling and the rendering pipeline,
from content creation to final visualization. The usual ap-
proach of modeling triangle meshes and rendering them
through incremental rasterization fails at both stages. First,
every leaf in a forest cannot be modeled manually. It has to
be scripted, thus already requiring a procedural description
of the geometry, and a way of expanding that description
to a visualizable representation. Second, the resulting geom-
etry can be too complex to be rendered in real-time even
with the immense triangle throughput of the latest graphics
hardware. That gives emergence to convoluted level of detail
techniques, which all need to address the issue of transition
between different triangle mesh representations.

The later in the pipeline the procedural description is ex-
panded, the less stages can prove to be a bottleneck. CPU ex-
pansion would require large amounts of geometry to be com-
municated to the graphics hardware. With geometry shaders,
this is no longer necessary, which has propelled the use of
procedural geometries in real-time applications to consid-

erable momentum®. However, a large number of triangles
would still need to be rasterized, and level-of-detail schemes
are still necessary.

In this paper, we propose a formally limited, but prac-
tically versatile procedural modeling and visualization ap-
proach that defers the expansion of the procedural geometry
to the final, pixel shader stage. In other words, we show that
ray tracing of the procedural geometry can be done in real-
time, at a computational complexity superior to rasterization,
and thus vastly outperforming incremental rasterization for
sufficiently complex geometries.

2. Previous work

IFS, or iterated function systems were conceived by
Hutchinson’. An IFS describes self-similar geometry by
specifying a set of functions mapping the self-similar com-
ponents to itself'?. The geometry is the attractor of the it-
eration of the function system, meaning the geometry can
be approximated with arbitrarily small error by iterating any
initial bound point set. IFSs are capable of generating ge-
ometries of fractal dimensions, occasionally resembling nat-

21

Szécsi / Logarithmic-time Rendering

ural phenomena, but usually with an easily discernable pat-
tern.

CSG, or constructive solid geometry defines geometries
as results of regular set operations on point sets, which
are either specified in the same manner, or are primitives.
These primitives are usually given as implicit surfaces.
Self-similar, natural geometries can be generated by intro-
ducing circles in the construction graph, leading to cyclic
object-instantiation graphs, or CSG-PL-Systems?. Efficient
ray tracing can be performed by generating bounding objects
for self-similar components!2.

F-rep’ defines objects as sets of points for which a func-
tion is non-negative. It supports set operations and recursion.

Sphere tracing was proposed by Hart?. It is an iterative
technique for ray intersection against a geometry for which
a distance function is known. This distance function must re-
turn a tight underestimation for the distance of a point and
the ray traced geometry, or, in other words, the radius of an
unbounding sphere * centered at the point. The algorithm
progresses by advancing a point along the ray with this dis-
tance, to the surface of the unbounding sphere.

Procedural models can be expanded to triangle meshes
in geometry shaders. Algorithms for L-systems® and split
grammars have been discussed by Sowers®.

3. Kernel-reflection sequences
Let us start with self-similar geometry defined by an IFS.
For the attractor point set A it is true that:

m—1
Jj=0

where § is a contractive, invertible linear transformation for
any j, and the number of component transformations is m.
This attractor can be obtained as a limit of the sequence:

m—1

A = | 54,
j=0
Ap = Ko,

where K is an arbitrary point set, which we will call a ker-
nel set. At this point, because of the contractiveness of the
operators, the limit is independent of the choice of Kj. Later,
we will abandon contractiveness and this will not be true.
In practice, A is approximated as A, with a suitably large n.
For all equations below, i € {0,...,n— 1} must be true un-
less otherwise noted. As we wish to use sphere tracing, the
kernel set will be defined by distance function ko(x), which
gives the geometric distance between point x and K.

First, let us generalize this construction by allowing dif-
ferent linear transformations on different iterations. S, de-
notes the jth transformation operator for iteration i. Then,

22

without the loss of generality, we can assume that m = 2,
as the polyadic union can always be expressed as a compo-
sition of dyadic unions. Thus, the recursive formula for A;
becomes

Air1 = F0,iAiUT1 A

For sphere tracing, an underestimation a;(x) for the dis-
tance between point x and A; is required. As described by
Hart3, this can be obtained if the Lipschitz constants of the
transformations (denoted by Lipg) are known.

ais1(x) < min (ai(8,)LipSy, ai(37, X)Lip3)),

ap(x) = ko(x).

The recursive computation of this formula for a,(x) re-
quires 2" evaluations of ky(x), which means that the perfor-
mance would be exponential in n, and linear in the number
of generated kernel instances. Thus, the algorithmic com-
plexity of sphere tracing could be at best identical to incre-
mental rendering of the same geometry, but with a much
worse constant factor. It is also notable that ray tracing in
general has logarithmic average complexity!!, but it is linear
in worst case, and recursively traversing subdivision hierar-
chies makes it ill-fit for GPU processing.

If bounding hulls are known, then bounds for ai({s”(')'i'x)

and a,-(SEilx) can be obtained, and the performance can be
significantly improved by prioritization and lazy evaluation
of recursion branches. However, we aim for complete, un-
conditional elimination of the recursion in order to get an
algorithm that has linear complexity in n, and thus logarith-
mic complexity in the number of kernel instances. Such an
algorithm can be implemented as an iteration, effectively ex-
ecutable on graphics processors. To those ends, we drasti-
cally limit the transformations we can use. Let §; always
be identity and §;; = R;, a reflection on the plane of equa-
tion m; -X — ¢; = 0. We always choose m; to have unit length,
thus the value of m; - x — ¢; also gives the signed distance of
point x to the plane. The operator 9R; means reflection on this
plane.

Rix =x—2(m; - X — ¢;)m;.
The 901; operator denotes the reflection of a direction vector:

Mo = ®—2(m; - 0)m;.

Both the indentity and reflection transformations are
isometries, thus their Lipschitz constants are unity. Identity
and reflection are not contractions, and the sequence is di-
vergent. The kernel geometries are preserved at their origi-
nal size and detail. Increasing n will increase the extents of
the set. Now, the sequence of attractor iterations is as simple
as:

Aip1 = AiURA;,

Szécsi / Logarithmic-time Rendering

unbounding
sphere

plane of
reflection

Figure 1: The distance of the closest point and its reflected
image.

Ap = Kp.
We further assume that

m;-x—c;>0—x¢A;,

m;-x—c; <0— x ¢ RA,.

This means that the geometry is composed of two disjoint
parts on the two sides of the mirror plane, which are reflected
images of each other (see Figure 1). We call this the assump-
tion of kernel separation. A simple test can tell which part
is at less distance to point x. We just need to determine if
the point is behind or in front of the mirror plane, that is,
whether m; - x —¢; < 0. The closest point of the geometry
must be on the same side. (If it were not, the reflected im-
age of the closest point would be even closer, resulting in
contradiction.)

This construction allows only for reflection-multiplied in-
stances of the same, unscaled kernel geometry. While this
might be enough to model some natural phenomena, hier-
archies (like branches of a tree) and non-symmetric parts
are not covered. In order to remedy this, let us add a new
kernel set K; at each iteration. These are defined by a se-
quence of possibly all different k;(x) distance functions,
where i € {0,...,n}. To emphasize the difference in con-
struction, we replace the notation A; with L;, and call L; an
expansion level. These also form a finite sequence, where
Liy is recursively defined as:

Liy1 = Kip1 UL URL;,

Ly = Kp.

Thus, an expansion level consists of two symmetric in-
stances of the previous level, and an additional kernel set.

We call such a construct a KRS, or kernel-reflection se-
quence. Formally, it is an ordered pair of two finite se-
quences, one consisting of kernel sets, and another of reflec-
tion operators.

KRS = (KO:"'aKﬂ;m()v"'vmn—l)

nearest point

unbounding found
oun

sphere

actual
nearest

point RL,

Figure 2: Clipped kernel part might influence the distance
estimate.

The distance function for a KRS is:

l,'+1 (X) = min(k,-+1 (X) y l,‘(X), l,-(‘.R,-x)),

lo(x) = ko(x)-

In order to evaluate the formula, we do not have to compute
all the terms. As L; and 9R;L; are known to be mirrored im-
ages, we can decide which distance is going to be smaller by
finding on which side of the mirror plane x is.

i1 (x) = min(kiy (x),1(x)) ifm;-x—¢; <0
RS min(kiy (%), 5(Rix)) ifmix—c¢; >0

Note that if the assumption of kernel separation does not
hold, with this decision we implicitly enforce it by elipping
the distance functions to the mirror plane. Therefore, we do
not need to take care of this assumption when picking ker-
nels or reflection planes. The returned value might be smaller
than the actual distance. In Figure 2, x is on the negative side,
so L; is closer. The clipped part of the kernel is also consid-
ered, making the underestimation somewhat less tight, but
still a conservative choice for sphere tracing. The iterative
algorithm to evaluate the distance is given in Algorithm 1.

Algorithm 1 Returns distance between x and the KRS.
1: function DISTANCE(X)
2 p+—X
3 d < kn(p)
4 for i = n— 1 downto 0 do
5 if p-m; —c¢; > 0 then
6: p < Rip
7
8
9
0
1

end if
d < min(d,k;(p))
end for
return d
: end function

4. Ray-casting

There are multiple options for the GPU visualization of a
KRS, practically any IFS visualization method could be gen-
eralized. Most prominently, kernel instance transformations

23

Szécsi / Logarithmic-time Rendering

can be computed in geometry shaders, and then kernel ge-
ometries rendered with geometry instancing. However, the
main motivation behind the construction of KRSs is that they
can be ray-traced with an iterative algorithm. Thus, in this
paper, we focus on visualization with ray-casting. A full-
viewport quadrilateral is rendered, and pixel shaders find the
intersection points using sphere tracing. The search is termi-
nated when the ray has passed through the scene or when
the computed distance falls below an error treshold level.
The value is inversely proportional to the camera depth, and
is set to assure that the final unbounding sphere, projected
onto the viewport, is smaller than a pixel. A higher tresh-
old level will, in practice, make the kernel geometries ap-
pear thicker, as points in close proximity are considered to
be members. Therefore, geometries at a large distance will
merge into smoother formations, loosing sub-pixel details.
This, combined with the smooth shading and texturing tech-
niques we describe in Sections 6.1 and 6.2, eliminates alias-
ing and achieves automatic, continuous level-of-detail.

4.1. Acceleration with unbounding spheres

The sphere tracing process can be accelerated if we ex-
ploit the screen-space coherence of the ray-casting prob-
lem. Shaders processing neighboring pixels will execute
very similar steps, at least in the beginning. These can be
avoided, if, in a cheap preprocessing step, we can find tighter
free distances to start sphere tracing from. Various algo-
rithms could be based on the idea that when an unbounding
sphere is found, the information might be useful for more
than one pixel. Unbounding spheres may be rasterized with
depth buffering suitably set up, or stored in a searchable data
structure and queried from final ray-casting pixel shaders.
We conjecture that any such method will produce a starting
distance field of practically similar quality, when the cost
compared to the full ray-casting itself has to be negligible.
We base this claim on the intuitive recognition that a free
distance map coarser than the viewport resolution can only
be useful in front of the first layer of depth. For those expen-
sive, and not uncommon rays that have passed by the geom-
etry closely, the map can give no more clues.

We implemented a scheme that divides the viewport into
tiles, and traces beams of primary rays that pass through
a tile. Sphere tracing progresses along the ray through the
center of the tile up to the last unbounding sphere that cov-
ers the complete solid angle of the beam (Figure 3). Then,
this sphere and a few more are stored for the tile, and used
when ray-casting in pixels of the tile. Care is taken to en-
sure that the union of all stored spheres, intersected by the
beam is convex as seen from the eye. Figure 4 depicts this
process. At the ray exit point on the last stored unbounding
sphere E, a new, tentative unbounding sphere T is generated.
The next stored sphere F must touch the intersection of the
two unbounding sphere shells, and its tangents there must go

24

. g
viewport

sk

last unbounding sphere
to cover the beam

Figure 3: Traversing a ray for a tile, up until the last sphere
that covers the beam.

eye

eye-convex boundary

Figure 4: Finding an unbounding sphere that makes a con-
vex profile. (Note that the center of T has been placed further
away than the free distance for a more readable figure.)

through the eye. This acceleration scheme resulted in about
10-30% less rendering time.

4.2. Acceleration with procedural bounding geometry

Free distances for sphere tracing can also be found by ren-
dering bounding objects. Here, we can easily avoid the expo-
nential explosion, as a choice of level-of-detail is not critical.
Abrupt changes in the bounding geometry will not influence
the correctness of sphere tracing, and there are no popping
artifacts.

5. Techniques to hide symmetry

There are two features of a KRS that strain its credibil-
ity as a natural occurrence. Symmetry might be visible and
identical motifs are repeating. One countermeasure is that
non-symmetric kernel elements are added on every iteration.
More importantly, planes of reflection should be selected so
that the eye can only be near to a few of them at the same
time. If the eye is not near to the mirror plane, the symme-
try of the 3D object will not be perceived on a 2D image.
Thus, it cannot happen that our geometry appears like an ob-
viously artificial fractal pattern from a viewpont. The unde-
sirable symmetry effects on the global scale are eliminated.
Figure 5 offers a comparison.

Szécsi / Logarithmic-time Rendering

S AN

Figure 5: Spheres reflected by aligned mirrors and un-
aligned mirrors.

Figure 6: A tree with isometric transformations and with
Lipschitz distortion.

Fighting symmetry on the local scale is more challenging.
There will always be a viewpoint from where two subsets
are visibly the reflected images of each other. This can only
be handled if the symmetry is indeed broken.

5.1. Combination of multiple KRSs

Where a single KRS cannot produce the desired effect of
natural disorder, the union of multiple KRSs can. When, in
a forest, there are three completely different trees between
the two that are mirror images of each other, symmetry is
undetected. Sphere tracing multiple KRSs can be effectively
implemented by maintaining the free distance along the ray
for all components, and always advancing the ray to the min-
imum. Compared to the single KRS case, the performance is
only decreased where different silhouettes overlap.

Procedural or projective texturing can also be considered
to be a way of combining features that exhibit periodicity
at different frequencies. We will detail techniques in Sec-
tion 6.2.

5.2. Distance distortion

The Lipschitz constant of KRS transformation functions is
unity, resulting in exact values for the distance (save for non-
separated kernels). By sacrificing some performance, we can
handle any Lipschitz transformation of the KRS geometry as
described by Hart 3. The resulting geometry does not have to
be symmetric any more (Figure 6).

Figure 7: Rock composed of planar kernels with flat and
smooth shading.

6. Combination with other real-time techniques

KRS ray-casting can only be a viable alternative to
geometry-shader produced geometries if it supports all the
incremental image synthesis techniques contributing to real-
ism.

6.1. Local shading

KRS kernels are solids with well defined surface normals.
The only difficulty is their transformation from kernel space
to world space. If b; is one if p-m; — ¢; > 0 and zero other-
wise, then the complete transformation of the kernel is:

Pworld = mz":]l o mzn__gz B #3+i0) mg" * Pkernel -
The normal v must be transformed with the inverse transpose
of the transformation matrix. The inverse of a reflection is it-
self, transposition and inversion both turn the order of matrix
multiplication.

Vworld = WII,),"__ll omﬁ':zz Qieies © 9333“ * Vkernel -
Unfortunately, the evaluation of this formula requires us ei-
ther to record decision variables b; during Algorithm 1, or to
maintain a product transformation as the iteration proceeds
in decreasing order of i. The latter solution is desirable, as
it scales better with increasing n. However, it is even more
efficient to transform the world space light vector (and view
vector, if necessary) into kernel space, and evaluate the shad-
ing there.

When kernels and mirrors are not selected so that kernel
separation is upheld, there is likely to be a visible discontinu-
ity of surface normals where the plane of reflection intersects
the mirrored geometry. These can be smoothed by interpo-
lating between normals or light directions near these planes.
This technique allows the generation of smooth surfaces
from a kernel as simple as an infinite plane. Figure 7 com-
pares flat and smooth shading of a surface composed of pla-
nar kernels. The shading algorithm complete with light di-
rection interpolation is listed as Algorithm 2. The lerp func-
tion performs linear interpolation between its first two argu-
ments weighted by the third argument clamped to unit range.

25

Szécsi / Logarithmic-time Rendering

A

Figure 8: Texturing with kernel parametrization on tree
branches and triplanar projection on terrain.

The eyeshold distance influences the amount of smoothing.
To eliminate aliasing artifacts, it should be inversely propor-
tional to the camera depth. The shading algorithm runs only
once, after sphere tracing has found the intersection point.

Algorithm 2 Returns the diffuse shaded color of KRS at
point x with surface normal v illuminated by light from di-
rection T. r is the incoming radiance and d is the diffuse
BRDF coefficient.

1: function SHADE(x,V,T,r,d)

2; p<Xx

3 0T

4: d + kn(p)

5 for i = n— 1 downto 0 do

6: e<—p-m;—c; > signed distance to plane
7 if e > 0 then

8: p — Rip

9: end if

10: p <+ Mo

11 ® < lerp(®, p,e/eeshold + 0.5)
12: d < min(d,ki(p))

13; end for

14: return d

15: end function

6.2. Texturing

The kernel solids are usually simple objects (e.g. torus seg-
ments) that lend themselves to easy u,v parametrization.
There are two cases when this solution is not feasible. First,
if we use kernels where such a parametrization is not trivial.
Second, if the kernels are simplistic, like infinite planes, that
even the smallest details of geometry are determined by the
reflection transformations. In this second case, texturing all
kernel instances with the same coordinates would produce
an extremely repetitive pattern, emphasizing symmetries un-
desirably. Procedural 3D or triplanar! texturing is applicable
with convincing results (Figure 8). Procedural geometry and
procedural or wrapped textures combine to eliminate the ob-
servable repetitiveness of each other.

26

Figure 9: Sponge with ambient occlusion.

6.3. Depth composition

A ray-cast KRS can easily be integrated into scenes rendered
incrementally. The depth buffer can be used for early termi-
nation of rays. The ray casting shader can also output depth
if it is necessary, e.g. if transparent geometry is to be ren-
dered afterwards, or if shading is deferred.

6.4. Collision and destructibility

Based on the distance function and surface normal compu-
tation, a KRS can be integrated into any collision detection
and response scheme.

A KRS is not locally controllable. However, it is possible
to create empty zones by specifying unbounding spheres over
subsets. The regions of these spheres should be skipped dur-
ing sphere tracing. The subset of the KRS within these empty
zones can be substituted with instances of kernel geome-
try rendered incrementally. These solid instances can then
be subjects of any kind of physical simulation. E.g. when a
branch of a tree in a forest should break, the complete tree is
covered with an empty sphere, and an identical tree of rigid
body branches and leaves is built. This can then be manipu-
lated independently.

6.5. Global shading

Beyond sheer triangle throughput, KRS geometry has an-
other key advantage over incrementally rendered geometry.
Sphere tracing can not only be performed for eye rays, but
also for secondary rays. Shadows, reflections, ambient oc-
clusion (Figure 9), or any global illumination techniques
based on ray tracing can be implemented.

Szécsi/ Logarithmic-time Rendering

7. Modeling

KRSs appear to be limited at what can be modeled with
them. At an iteration count and scale large enough for the
individual kernels not to be distinguishable, the geometry
tends to resemble the 3D equivalent of a Lévy C-curve. How-
ever, a forest from the air, a cloud in the sky, a hilly land-
scape, or a battered rock look exactly like that, from far
enough. In this section we are going to present a few ex-
amples of application.

7.1. Coral, terrain and rock

Those natural features that are traditionally well modeled
by IFS are good candidates for KRS. The variation in scale
that is lost because we only use isometries is compensated
by additional kernels and any statistical self-similarity in-
duced by the choice of our transformations. When model-
ing these geometries, the choice of kernel sets is also less
important: spheres or infinite planes are sufficient. The sep-
aration of kernels is neither desirable nor always possible.
Even the smallest details will be defined by the transforma-
tions. Smooth shading and procedural or triplanar texturing
greatly enhance the visual quality.

7.2. Tree and forest

A tree is a classic hierarchical structure, where the kernel
sets added at each iteration become crucial. The first few ker-
nels and reflections define the leaf geometry and the thinnest
twig. Then, every new expansion level doubles this geome-
try, with a reflection placed so that the two main branches
start from the same point. A new, thicker branch that ends
at the junction is added as the next kernel. For kernels act-
ing as branches, we used toroidal capsules, composed of a
torus segment and two capping spheres. The coefficients of
the distance functions are computed from intuitive model-
ing parameters. First, forking positions along one route from
the trunk te a twig end must be given. Branches along this
route will be the kernels. Then, a control point on every such
branch can be moved to set curvature. Two forking positions
and a control point define the generating circle of the torus.
Branch width gives the section radius. Planes of reflection
must be placed at forking positions, with editable normals.
A forest can be generated by adding more reflections (iden-
tical to those of the terrain, if it is also present) with empty
extra kernel sets.

8. Results

There were two distinct types of test scenes: ones with com-
plex kernels (trees, grass) and ones with simples kernels (ter-
rain, rock). In the following table we give how much time
it took (in microseconds) to trace a single ray on average,
versus the triangle count equivalent of the scene complexity
(how many triangles would be necessary to achieve the same
result.)

Figure 10: A groove of trees.

Triangle count Complex kernel (us) ~ Simple case (us)

26 21

212 37 A
918 50 47
220 54 93
922 58 146
phel 61 191
226 64 250
928 65 300
230 68 355
p32 71 397

Increasing the expansion level by one resulted in an aver-
age increase of rendering time of 25 microseconds for com-
plex kernels and 3 microseconds for simple ones. We can
conclude that it is possible to achieve interactive speeds on
scenes equivalent to billions of triangles.

9. Conclusion

KRS rendering can be used together with incremental image
synthesis in real-time applications. It is capable of modeling
a wide range of natural geometries, without the possibility
of local control, but with fine details and large extent at the
same time. Features that could only be represented by bil-
lions of triangles, like grasslands or forests, can be rendered
in real time. Thus, KRS can add the desired natural richness
of detail to virtual worlds without the need for customized
level-of-detail techniques.

Animation of KRS geometries is left for future work.
While animation of the model parameters is unlikely to pro-

27

Szécsi/ Logarithmic-time Rendering

duce credible motion, subtle changes to low-index trans-
formations might be acceptable. Time-dependent Lipschitz
transformations appear more promising.

10. Acknowledgements

This work has been supported by OTKA PD-104710 and
the Janos Bolyai Research Scholarship of the Hungarian
Academy of Sciences.

References

1. Ryan Geiss. Generating complex terrains using the
GPU, chapter 1, pages 7-37. Addison-Wesley Profes-
sional, 2007.

2. M. Gervautz and C. Traxler. Representation and real-
istic rendering of natural phenomena with cyclic CSG
graphs. The Visual Computer, 12(2):62-74, 1996.

3. J.C. Hart. Sphere tracing: a geometric method for the
antialiased ray tracing of implicit surfaces. The Visual
Computer, 12(10):527-545, 1996.

4. J.C. Hart and D.J. Sandin. Louis H Kauffman t. Ray
Tracing Deterministic 3D Fractals. Computer Graph-
ics, 23(3), 1989.

5. J.E. Hutchinson, Dept. of Mathematics, and University
of Melbourne. Fractals and Self Similarity. University
of Melbourne.[Dept. of Mathematics], 1979.

6. H.Nguyen. Gpu gems 3. Part I - Geometry. 2007.

7. A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko.
Function representation in geometric modeling: con-
cepts, implementation and applications. The Visual
Computer, 11(8):429-446, 1995.

8. P. Prusinkiewicz and A. Lindenmayer. The algorithmic
beauty of plants. Springer-Verlag New York, Inc. New
It York, NY, USA, 1990.

| 9. B. Sowers, T. Menzies, T. McGraw, A. Ross, and W.V.
Morgantown. Increasing the Performance and Realism
of Procedurally Generated Buildings. 2008.

10. L. Szirmay-Kalos. Szdmitégépes grafika. Computer-
Books, Budapest, 1999.

11. L. Szirmay-Kalos and G. Marton. Worst-case versus
average-case complexity of ray-shooting. Journal of
Computing, 61(2):103-131, 1998.

12. C. Traxler and M. Gervautz. Efficient ray tracing of
complex natural scenes. Proceedings Fractals, 97,
1979.

28

Seventh Hungarian Conference on Computer Graphics and Geometry, Budapest, 2014

Rotational-minimizing surfaces in sphere-based surface
design

Miklos Hoffmann,] Juan Monterde?

! Institute of Mathematics and Computer Science, Karoly Eszterhazy College, Leanyka str. 4, H-3300 Eger, Hungary
2 Dep. de Geometria i Topologia, Universitat de Valéncia, Avd. Vicent Andrés Estellés, 1, E-46100-Burjassot (Valéncia), Spain

Abstract

This work is aiming at computing the blending surface of two given spheres, where the touching circles (and there-
fore the tangent cones) are predefined on the spheres. The blending surface (or skin) has to touch the given spheres
at predefined circles. This is a subtask of a larger project, where - instead of the well-known control point-based
design - sphere-based design of surfaces is introduced. The main advantage of the presented method over the ex-
isting ones is the minimization of unwanted distortions of the blending surface. This is achieved by the application
of rotational-minimizing frames for the transportation of a vector along a given curve, which technique, beyond its
theoretical interest, helps us to determine the corresponding points along the touching circles of the two spheres.
The final blending surface is also defined by the help of the rotational minimizing transportation. The discussion
of the method follows our recently submitted paper '°.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computational Geometry and Object Model-
ing]: Curve, surface, solid, and object representations

1. Introduction and related work

The problem of joining spheres by a surface being tangent
to them is considered by several authors using various ap-
proaches. This surface, also called blending surface or skin,
touches the spheres along circles, where the tangent cone
of the sphere contains the end tangents of the surface. This
is a specific problem of a larger project KSpheres!! 12 (see
Fig.1), where sphere-based design of characters and other
surfaces is introduced, a set of spheres has been blended
by surface patches. In this approach the touching circles are
computed with the help of Apollonian circles and the blend-
ing surface is formed by cubic Hermite interpolants.

Our initial problem is uniquely defined by the touching
cones of two spheres (c.f. Fig. 2). This problem is of essen-
tial importance in newly emerged animation design software

tools, such as ZSpheres® or SporeTM, where the point-
based design is altered by sphere-based construction, but
it also appears in medical applications's. Dupin cyclides
and their generalizations have been applied to this problem
(see'* 3 and references therein) with a deep geometric view
but also with restrictions to the positions of the initial data in

case of a single cyclide surface, while in case of two joining
cyclides the geometric form of the blending surface has not
always been satisfactory.

An iterative method of skinning has been introduced
in!6.15 where, starting from an initial skin, an energy func-
tion is minimized during the iterations in order to reach the
optimal surface. This method has certain advantages from
the viewpoint of optimization, but it is also quite sensitive
for the initial position of the skin and due to the iterative
nature it is quite slow with no proven convergence.

Although our earlier method in KSpheres!! works for al-
most any positions of the initial data, the final surface, just
as in case of all the above mentioned methods, may suffer
from distortions due to the unwanted rotation along the cen-
tral (spine) curve. The source of this distortion is the fact
that the pairing of corresponding points on the two touch-
ing circles is not solved in a sufficient way. To avoid the
unnecessary rotation of the blending surface along the spine
curve a straightforward idea is to apply the recent results of
rotational-minimizing frames (RMF). These frames, origi-
nally developed as an alternative of the well-known Frenet
frames of parametric curves, were also known as relatively

29

Mikiés Hoffmann and Juan Monterde / Rotational-minimizing surfaces in sphere-based surface design

Figure 1: Sphere-based design of surfaces in KSpheres.

30

i

Figure 2: Visualization of the statement of the problem. The
initial data contain two spheres and their touching cones.

parallel adapted frames or Bishop frames!. They can pro-
vide a sufficient solution of minimizing this kind of dis-
tortion along a curve® !7. The rotational-minimizing frames
are excellent tools in curve design® 7. They have been also
applied in constructing parametric surfaces in? but that ap-
proach provides only an approximate solution, moreover it
requires a continuous one-parameter set of spheres instead
of discrete input data.

The aim of this paper is at providing a method to blend
two spheres by a rotational-minimizing blending surface.
Contrary to the previous approaches, the RMF is applied
for a spine curve of the future surface, by the help of which
the surface is computed in a way that the parameter curves
follow the RMF. Moreover, in earlier approaches the spine
curve is a planar curve, while in our method it can be a
spatial curve as well. The surface is rotational-minimizing
in a sense that these parametric curves of the surface have
no distortion comparing to the corresponding rotational-
minimizing frame along the spine curve. The method works
for a wide range of initial data and can be computed in sec-
onds, although not necessarily in real time. In Section 2 of
this paper the problem is precisely formulated, together with
the overview of the method provided in!'. The basic nota-
tions and the necessary computational methods are summa-
rized in terms of rotational-minimizing frames in Section 3,
where we also define the notion of rotational-minimizing
transportation along a curve. The solution and the detailed
computation are provided in Section 4.

2. The problem

Suppose that two spheres are given in R3, with two circles
(pi,ri) and (pr,rr) on them, having centers p; and py and
radii rj and ry, respectively. Let x; be the apex of the tangent
cone touching the first sphere along circle (p;, r;), while x¢
be the apex of the tangent cone touching the second sphere
along circle (pr,rr) (see Fig. 2 and 6).

Further on, let V; and v} be vectors from the center of the
given circles, parallel to the axes of the touching cones, that
P = — — -
is ¢;v; = pix; and crvy = prxy for some ¢, cr € R\ {0}.

Miklés Hoffmann and Juan Monterde / Rotational-minimizing surfaces in sphere-based surface design

J
/'
— #
. F
— v
e 2

Figure 3: A surface blending the given spheres touching
them at the given circles.

Our aim is to define a surface S(6,¢) touching the given
spheres at the given circles with the least possible distortion.
It is constructed in a way that the parametric curve S(8y, ¢)
which belongs to a fixed value 6y will connect a point g;
of the first circle and the corresponding point g of the sec-
ond circle, while tangent vectors of the curve in these points
will be parallel to the corresponding generatrix of the tan-
gent cone, that is

5(80,0) = q, S(60,1) = qr,
900,00 = W, $(60,1)=w;
where
Wi = a; (piXi— pigy) = a; (Vi — pidi) M
and
wr=ar(prxr—prqr) = ar(cvi—prqr) (2)

with aj,ar € RT.

Also notice that we can write

= — T
Wi = a; qiXj, wr=ar QIX f-

The key question is that which point g of the second cir-
cle should belong to the initial point g;. In!! a fast and simple
algorithm is provided to compute the corresponding points
By defining an arbitrary direction € not parallel to v; and
v/, the two corresponding points are defined by the vectors
— = — = .

vi x € and "€ x vy, more precisely

e xV
:tl'"—l—

QI P: ’”—E)XV,)“

— =

_ Ao e X Vvr
qr = Pr I”—e)xv;”»

- where the sign of the latter tags depends on the measure

of the angles between the vectors V; and p;py, and v; and
PiPf, respectively. If the angle is greater than 1t/2, then the
sign is negative, otherwise it is positive. Further pairs of
points are obtained by the rotation of the original pairs along
the circles.

Note, that the choice of @ has not uniquely been defined
in this algorithm. A similar, even more evident choice of the
two corresponding points can be defined simply by the vec-
tor V; X vy as

V, XV[
qr Pf+rf||—) -—)H

This straightforward but somehow ad hoc selection of cor-
responding points of the circles works in a satisfactory way
for several cases, for example when the vectors V;, v and
Pipr are coplanar, that is the axes of the touching cones are
parallel or intersecting lines. In most figures of !! this is the
case. However, if the positions of the touching circles differ
from this case, that is the axes of the touching cones are skew
lines, the above mentioned method of mapping of points can-
not be justified. In fact, the blending surface is heavily af-
fected by the choice of corresponding points and can have a
kind of distortion in some cases, as it can be seen in Figures
4. Our aim is to provide a theoretically funded method of
finding the most suitably corresponding pairs of points.

3. Rotation Minimizing Frames

In this section we briefly overview the basic concept of Ro-
tational Minimizing Frames (RMF in short), and we define
the rotational minimizing transportation of a vector along the
curve.

Definition 1 (See &, '7) Given a regular curve o : [0,1] —
Rla positive oriented orthonormal frame {wg, wy, w3 } along
the curve is called rotation-minimizing frame (RMF) if

L w=t,

2. wi’ is parallel to t .

Remark 1 The second condition is equivalent to ask for Wf

= .
being parallel to t , where the dot denotes arc-length deriv-
ative.

3.1. Transportation along a curve using a RMF

Given a unit vector v, orthogonal to o’ (0), there is a unique

rotation-minimizing frame along the curve o, denoted by
7 = —

{ t,wi, w3}, such that

wi(0) = 7.

31

Miklés Hoffmann and Juan Monterde / Rotational-minimizing surfaces in sphere-based surface design

Figure 4: The effect of the different choices of corresponding
points and possible distortions of the surfaces in two differ-
ent positions of initial data

Let us recall how to compute it. If we denote the Frenet
frame of the curve o by

{t,%,b}
then
W (6) = cos(8(0) W () —sin(B()) b (1), ()
where
0(1) = 09 — /0 ‘) s, @

being 6(the oriented angle defined by the normal vector
7' (0) and g, and being T the torsion of the curve o Arc-
length parameter is denoted by s. If another parameter is
used for the curve o, then

/Ot‘t(s) ds= /O'r(u)ua’(u)n du.

Definition 2 Let us define the rotation-minimizing trans-
portation (RM-transportation for short) to ct(1) of the vector
Vo along the curve o using a rotation-minimizing frame as
the vector w; (1).

Notice that ||wy(1)|| = 1 and wi(1)La/(1).

32

Figure 5: The rotation-minimizing map q; — qr between the
perpendicular unit circles at the end points of the curve a(t).

Therefore, we can define a map between the perpendicular
unit circles at the end points of the curve o. Given a point g;
in the unit circle on the normal plane to the curve at o.(0), let

us consider the vector vy = 0.(0)q;, then g7 = (1) + wy (1).

o s : T
The initial angle 0y is the angle between vy = 0.(0)g; and the
—
binormal vector to the curve o(¢) at 0.(0), b(0). The angle 6.1

(see Fig. 5) is defined as
1
0, =~ | w(wlle/ ()] du

Notice that in this way we can control which point g7 in
the second circle is associated with a given point g; in the
first circle, while the tangent vectors of the parameter curve
of the surface joining g; and g are inherited from the touch-
ing cones.

4. The so<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>